Luke Alexander Maniangat, Rezallah Nader Nabil Fouad
Department of Clinical Sciences, College of Dentistry, Ajman University, P.O Box 346, Ajman, UAE.
Center for Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, UAE.
Head Face Med. 2025 Apr 4;21(1):24. doi: 10.1186/s13005-025-00496-8.
Artificial intelligence (AI) has significantly transformed the diagnosis and treatment of dental caries, a prevalent issue in oral health care. Traditional diagnostic procedures such as eye inspection and radiography have limitations in detecting early-stage degradation. Artificial intelligence (AI) provides a viable alternative to improve diagnostic precision and effectiveness. This systematic review examines the diagnostic precision of artificial intelligence systems in identifying dental caries using X-ray images.
The literature search utilized electronic web resources such as PubMed, Scopus, Web of Science, IEEE Explore, Google Scholar, Embase, and Cochrane. We conducted the search using specific MeSH key phrases and collected data up to January 2024. The QUADAS-2 assessment method was used to assess the risk of bias using a graph and a heat map. We conducted the statistical analysis using R v 4.3.1 software, which included the "meta," "metafor," "metaviz," and "ggplot2" packages. We displayed the results using odds ratios (OR) and forest plots with a 95% confidence interval (CI).
We used a comprehensive search approach in accordance with the PRISMA guidelines to find appropriate studies. The meta-analysis incorporates fourteen of the 21 articles included in this review. The research mostly uses convolutional neural networks (CNNs) for analyzing images, showing outstanding accuracy, sensitivity, and specificity in detecting caries. Significant variability in study results highlights the need for additional research to comprehend the components affecting AI effectiveness.
Despite challenges in implementation and data availability, this systematic review provides essential information about AI and shows great potential caries detection, improve diagnostic consistency, and ultimately enhance patient care in dentistry.
人工智能(AI)已显著改变了龋齿的诊断和治疗方式,龋齿是口腔医疗保健中的一个普遍问题。传统的诊断方法,如目视检查和X光摄影,在检测早期龋齿恶化方面存在局限性。人工智能提供了一种可行的替代方法,以提高诊断的准确性和有效性。本系统评价旨在研究人工智能系统使用X光图像识别龋齿的诊断准确性。
文献检索利用了电子网络资源,如PubMed、Scopus、Web of Science、IEEE Explore、谷歌学术、Embase和Cochrane。我们使用特定的医学主题词(MeSH)关键词进行检索,并收集截至2024年1月的数据。采用QUADAS - 2评估方法,通过图表和热图来评估偏倚风险。我们使用R v 4.3.1软件进行统计分析,该软件包括“meta”“metafor”“metaviz”和“ggplot2”软件包。我们使用优势比(OR)和95%置信区间(CI)的森林图来展示结果。
我们按照PRISMA指南采用全面的检索方法来查找合适的研究。本综述纳入的21篇文章中有14篇被纳入荟萃分析。研究大多使用卷积神经网络(CNN)来分析图像,在检测龋齿方面显示出出色的准确性、敏感性和特异性。研究结果的显著差异凸显了需要更多研究来理解影响人工智能有效性的因素。
尽管在实施和数据可用性方面存在挑战,但本系统评价提供了关于人工智能的重要信息,并显示出其在龋齿检测方面的巨大潜力,可提高诊断的一致性,并最终改善牙科患者的护理。