Suppr超能文献

从虚拟范本中进行形状和空间变化反射率估计。

Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Oct;39(10):2060-2073. doi: 10.1109/TPAMI.2016.2623613. Epub 2016 Nov 1.

Abstract

This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.

摘要

本文针对具有空间变化反射率的物体形状估计问题。我们假设在固定视点和变化光照下(即光度立体视觉设置)获得物体的多个图像。我们技术的核心是假设每个像素的 BRDF 位于已知 BRDF 字典的非负张成内。该假设启用了一种逐像素表面法线和 BRDF 估计框架,该框架在计算上是可行的,并且尽管基础问题是非凸的,但不需要初始化。我们的估计框架首先使用基于示例的光度立体视觉的变体来求解每个像素的表面法线。我们设计了一种有效的多尺度搜索策略来估计表面法线,并使用梯度下降过程来改进此估计。给定表面法线估计,我们通过将每个像素的 BRDF 约束在 BRDF 字典的张成内来求解空间变化的 BRDF;在这里,我们使用额外的先验来进一步正则化解。我们的方法的一个特点是它不需要迭代优化技术,也不需要仔细的初始化,这两者都是大多数最先进技术的固有问题。我们在广泛的模拟和真实场景中展示了我们的技术性能,在这些场景中,我们的表现优于竞争方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验