Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.
PLoS Genet. 2021 Nov 22;17(11):e1009918. doi: 10.1371/journal.pgen.1009918. eCollection 2021 Nov.
The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.
全基因组关联研究(GWAS)中检测到的大多数遗传变异通过基因调控对表型发挥作用。受此观察结果的启发,我们提出了一种多组学整合方法,该方法通过从表观基因组到转录组再到表型的级联效应来模拟遗传变异对受风险等位基因影响的靶基因的影响。我们将这种用于 GWAS 的级联表观基因组分析称为 CEWAS,它包括两种模型:一种用于将顺式遗传效应与表观基因组变异联系起来,另一种用于将顺式表观基因组变异与基因表达联系起来。将这些模型级联应用于 GWAS 汇总统计数据会生成反映遗传驱动的表观基因组效应的基因水平统计数据。我们在 16 项与大脑相关的 GWAS 研究中表明,CEWAS 提供了比相关方法更高的基因检测率,并发现了与疾病相关的基因和基因集,这些基因和基因集指向了尚未深入研究的生物学过程。因此,CEWAS 提供了一种新的方法来探索 GWAS 变异的调控景观,以揭示疾病机制。