MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
Department of Biology, University of Florida, Gainesville, FL, USA.
BMC Ecol Evol. 2021 Nov 22;21(1):209. doi: 10.1186/s12862-021-01935-1.
Divergence time estimation is fundamental to understanding many aspects of the evolution of organisms, such as character evolution, diversification, and biogeography. With the development of sequence technology, improved analytical methods, and knowledge of fossils for calibration, it is possible to obtain robust molecular dating results. However, while phylogenomic datasets show great promise in phylogenetic estimation, the best ways to leverage the large amounts of data for divergence time estimation has not been well explored. A potential solution is to focus on a subset of data for divergence time estimation, which can significantly reduce the computational burdens and avoid problems with data heterogeneity that may bias results.
In this study, we obtained thousands of ultraconserved elements (UCEs) from 130 extant galliform taxa, including representatives of all genera, to determine the divergence times throughout galliform history. We tested the effects of different "gene shopping" schemes on divergence time estimation using a carefully, and previously validated, set of fossils. Our results found commonly used clock-like schemes may not be suitable for UCE dating (or other data types) where some loci have little information. We suggest use of partitioning (e.g., PartitionFinder) and selection of tree-like partitions may be good strategies to select a subset of data for divergence time estimation from UCEs. Our galliform time tree is largely consistent with other molecular clock studies of mitochondrial and nuclear loci. With our increased taxon sampling, a well-resolved topology, carefully vetted fossil calibrations, and suitable molecular dating methods, we obtained a high quality galliform time tree.
We provide a robust galliform backbone time tree that can be combined with more fossil records to further facilitate our understanding of the evolution of Galliformes and can be used as a resource for comparative and biogeographic studies in this group.
分歧时间估计对于理解生物体进化的许多方面至关重要,例如特征进化、多样化和生物地理学。随着序列技术、改进的分析方法以及校准化石知识的发展,获得稳健的分子定年结果成为可能。然而,尽管基因组数据集在系统发育估计中显示出巨大的潜力,但如何利用大量数据进行分歧时间估计尚未得到充分探索。一种潜在的解决方案是专注于数据的子集进行分歧时间估计,这可以显著降低计算负担,并避免数据异质性可能导致结果偏差的问题。
在这项研究中,我们从 130 种现存的雉科类动物中获取了数千个超保守元件 (UCEs),包括所有属的代表,以确定整个雉科历史的分歧时间。我们使用经过精心筛选和验证的化石集,测试了不同的“基因购物”方案对分歧时间估计的影响。我们的结果发现,常用的时钟样方案可能不适合 UCE 定年(或其他数据类型),因为某些位点信息较少。我们建议使用分区(例如 PartitionFinder)和选择树状分区可能是从 UCE 中选择数据子集进行分歧时间估计的良好策略。我们的雉科时间树与其他基于线粒体和核基因座的分子钟研究基本一致。通过增加分类群采样、良好解析的拓扑结构、经过仔细审查的化石校准以及合适的分子定年方法,我们获得了高质量的雉科时间树。
我们提供了一个稳健的雉科骨干时间树,可与更多的化石记录相结合,进一步促进我们对雉科进化的理解,并可作为该类群比较和生物地理学研究的资源。