Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA.
Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA.
PET Clin. 2022 Jan;17(1):13-29. doi: 10.1016/j.cpet.2021.09.009.
Almost 1 in 10 individuals can suffer from one of many rare diseases (RDs). The average time to diagnosis for an RD patient is as high as 7 years. Artificial intelligence (AI)-based positron emission tomography (PET), if implemented appropriately, has tremendous potential to advance the diagnosis of RDs. Patient advocacy groups must be active stakeholders in the AI ecosystem if we are to avoid potential issues related to the implementation of AI into health care. AI medical devices must not only be RD-aware at each stage of their conceptualization and life cycle but also should be trained on diverse and augmented datasets representative of the end-user population including RDs. Inability to do so leads to potential harm and unsustainable deployment of AI-based medical devices (AIMDs) into clinical practice.
近十分之一的人可能患有多种罕见病(RDs)之一。RD 患者的平均诊断时间高达 7 年。如果人工智能(AI)在正电子发射断层扫描(PET)中的应用得当,将具有巨大的潜力来推进 RD 的诊断。如果我们要避免与将 AI 应用于医疗保健相关的潜在问题,那么患者权益团体必须成为 AI 生态系统中的积极利益相关者。AI 医疗设备不仅在其概念化和生命周期的每个阶段都必须具有 RD 意识,而且还应该在多样化和增强的数据集上进行训练,这些数据集代表包括 RD 在内的最终用户群体。如果做不到这一点,将导致基于 AI 的医疗设备(AIMD)在临床实践中的潜在危害和不可持续部署。
PET Clin. 2021-10
PET Clin. 2022-1
Clin Imaging. 2019-8-31
Orphanet J Rare Dis. 2025-4-17
BMC Med Inform Decis Mak. 2025-2-5
J Ophthalmic Vis Res. 2024-9-16
Int J Comput Assist Radiol Surg. 2024-6
Front Endocrinol (Lausanne). 2021
Acta Paediatr. 2021-10
Interact J Med Res. 2021-5-21
Front Artif Intell. 2021-4-15
EBioMedicine. 2021-5