Suppr超能文献

硝基对 P-Z 碱基对激发态弛豫机制的作用。

The role of nitro group on the excited-state relaxation mechanism of P-Z base pair.

机构信息

The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.

The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 15;267(Pt 2):120549. doi: 10.1016/j.saa.2021.120549. Epub 2021 Nov 9.

Abstract

DNAs' photostability is significant to the normal function of organisms. P-Z is a hydrogen bonded artificial DNA base pair, where P and Z represent 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one and 6-amino-5nitro-2(1H)-pyridone, respectively. The excited-state relaxation mechanism of P-Z pair is investigated using static TDDFT calculations combined with the non-adiabatic dynamic simulations at TDDFT level. The roles of nitro rotation, nitro out-of-plane deformation, and single proton transfer (SPT) along hydrogen bond are revealed. The results of potential energy profile calculations demonstrate that the SPT processes along the hydrogen bonds are unfavorable to occur statically, which is in great contrast to the natural base pair. The non-adiabatic dynamic simulations show that the excited-state nitro rotation and nitro out-of-plane deformation are the two important relaxation channels which lead to the fast internal conversion to S state. The SPT from Z to P is also observed, followed by distortion on P, inducing the fast internal conversion to S state. However, this channel (decay via SPT process) plays minor roles on the excited-state relaxation mechanism statistically. This work shows the great differences of the excited-state relaxation mechanism between the natural base pairs and artificial base pair, also sheds new light into the role of hydrogen bond and nitro group in P-Z base pair.

摘要

DNAs 的光稳定性对生物的正常功能至关重要。P-Z 是一种氢键人工 DNA 碱基对,其中 P 和 Z 分别代表 2-氨基咪唑并[1,2-a]-1,3,5-三嗪-4(8H)-酮和 6-氨基-5 硝基-2(1H)-吡啶酮。使用静态 TDDFT 计算结合 TDDFT 水平上的非绝热动力学模拟,研究了 P-Z 对的激发态弛豫机制。揭示了硝基旋转、硝基面外变形和氢键中单质子转移(SPT)的作用。势能曲线计算结果表明,氢键中 SPT 过程静态发生是不利的,这与天然碱基对形成鲜明对比。非绝热动力学模拟表明,激发态硝基旋转和硝基面外变形是导致快速内部转换到 S 态的两个重要弛豫通道。还观察到 Z 到 P 的 SPT,随后 P 发生变形,导致快速内部转换到 S 态。然而,该通道(通过 SPT 过程衰变)在激发态弛豫机制中统计学上仅起次要作用。这项工作表明,天然碱基对和人工碱基对之间的激发态弛豫机制存在很大差异,也为氢键和硝基在 P-Z 碱基对中的作用提供了新的认识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验