Wang Fushuai, Yuan Quanzi, Shi Xinghua
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
Nat Commun. 2025 Jul 1;16(1):5463. doi: 10.1038/s41467-025-60635-2.
Chiral supramolecular self-assembly structures demonstrate properties far surpassing achiral counterparts, with broad applications in optoelectronics, biomedicine, and interfaces. However, controlled construction of mesoscopic/macroscopic chiral structures remains challenging due to limited understanding of chirality generation and cross-scale transmission mechanisms. Here, we report an instability-induced crystal self-assembly (IICSA) method where mechanical disturbances trigger structural instability in ibuprofen films, transforming disordered states into large-area ordered chiral structures featuring lamella and left-/right-handed fiber combinations through textured grain stacking. Based on the two-dimensional film model, direct visualization and active control of self-assembly dynamics are realized. Experimental and theoretical analyses reveal how surface/interface effects, geometry effects, and solid-liquid interactions collectively govern the self-assembly dynamics. These chiral structures further demonstrate programmable wettability modulation for surface engineering applications. This study deciphers mechanisms of supramolecular chirality generation and cross-scale transmission while providing a controllable paradigm for constructing mesoscopic/macroscopic chiral systems, advancing functional chiral material design.
手性超分子自组装结构展现出远超过非手性对应物的特性,在光电子学、生物医学和界面领域有着广泛应用。然而,由于对手性产生和跨尺度传输机制的理解有限,介观/宏观手性结构的可控构建仍然具有挑战性。在此,我们报告一种不稳定性诱导晶体自组装(IICSA)方法,其中机械扰动引发布洛芬薄膜中的结构不稳定性,通过纹理化晶粒堆叠将无序状态转变为具有片层和左旋/右旋纤维组合的大面积有序手性结构。基于二维薄膜模型,实现了自组装动力学的直接可视化和主动控制。实验和理论分析揭示了表面/界面效应、几何效应和固液相互作用如何共同控制自组装动力学。这些手性结构进一步展示了用于表面工程应用的可编程润湿性调制。本研究破译了超分子手性产生和跨尺度传输的机制,同时为构建介观/宏观手性系统提供了可控范例,推动了功能性手性材料设计。