Raizah Zehba, Aly Abdelraheem M
Department of Mathematics, Faculty of Science, King Khalid University, Abha, 62529, Saudi Arabia.
Department of Mathematics, Faculty of Science, South Valley University, Qena, 83523, Egypt.
Sci Rep. 2021 Nov 22;11(1):22687. doi: 10.1038/s41598-021-02046-z.
The time-fractional derivative based on the Grunwald-Letnikove derivative of the 2D-ISPH method is applying to emulate the dual rotation on MHD natural convection in a hexagonal-shaped cavity suspended by nano-encapsulated phase change material (NEPCM). The dual rotation is performed between the inner fin and outer hexagonal-shaped cavity. The impacts of a fractional time derivative [Formula: see text] [Formula: see text], Hartmann number Ha [Formula: see text], fin length [Formula: see text], Darcy parameter Da [Formula: see text], Rayleigh number Ra [Formula: see text], fusion temperature [Formula: see text] [Formula: see text], and solid volume fraction [Formula: see text] [Formula: see text] on the velocity field, isotherms, and mean Nusselt number [Formula: see text] are discussed. The outcomes signaled that a dual rotation of the inner fin and outer domain is affected by a time-fractional derivative. The inserted cool fin is functioning efficiently in the cooling process and adjusting the phase change zone within a hexagonal-shaped cavity. An increment in fin length augments the cooling process and changes the location of a phase change zone. A fusion temperature [Formula: see text] adjusts the strength and position of a phase change zone. The highest values of [Formula: see text] are obtained when [Formula: see text]. An expansion in Hartmann number [Formula: see text] reduces the values of [Formula: see text]. Adding more concentration of nanoparticles is improving the values of [Formula: see text].
基于二维无网格光滑粒子流体动力学(2D-ISPH)方法的 Grünwald-Letnikove 导数的时间分数阶导数,被用于模拟由纳米封装相变材料(NEPCM)悬浮的六边形腔内磁流体动力学自然对流的双重旋转。双重旋转在内部翅片和外部六边形腔之间进行。讨论了分数时间导数[公式:见原文][公式:见原文]、哈特曼数 Ha[公式:见原文]、翅片长度[公式:见原文]、达西参数 Da[公式:见原文]、瑞利数 Ra[公式:见原文]、熔化温度[公式:见原文][公式:见原文]和固体体积分数[公式:见原文][公式:见原文]对速度场、等温线和平均努塞尔数[公式:见原文]的影响。结果表明,内部翅片和外部区域的双重旋转受时间分数阶导数的影响。插入的冷却翅片在冷却过程中有效发挥作用,并调整六边形腔内的相变区域。翅片长度的增加增强了冷却过程并改变了相变区域的位置。熔化温度[公式:见原文]调整相变区域的强度和位置。当[公式:见原文]时获得[公式:见原文]的最高值。哈特曼数[公式:见原文]的增加会降低[公式:见原文]的值。添加更多浓度的纳米颗粒会提高[公式:见原文]的值。