The Hakubi Centre for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
Mater Horiz. 2022 Feb 7;9(2):547-558. doi: 10.1039/d1mh01413g.
Alloy nanoparticles (NPs), including core-shell, segregated and solid-solution types, show a variety of attractive properties such as catalytic and optical properties and are used in a wide range of applications. Precise control and good reproducibility in the syntheses of alloy NPs are highly demanded because these properties are tunable by controlling alloy structures, compositions, particle sizes, and so on. To improve the efficiency and reproducibility of their syntheses, continuous-flow syntheses with various types of reactors have recently been developed instead of the current mainstream approach, batch syntheses. In this review, we focus on the continuous-flow syntheses of alloy NPs and first overview the flow syntheses of NPs, especially of alloy NPs. Subsequently, the details of flow reactors and their chemistry to synthesize core-shell, segregated, solid-solution types of alloy NPs, and high-entropy alloy NPs are introduced. Finally, the challenges and future perspectives in this field are discussed.
合金纳米粒子 (NPs),包括核壳型、分隔型和固溶体型,具有多种有吸引力的性质,如催化和光学性质,并被广泛应用于各种领域。由于这些性质可以通过控制合金结构、组成、颗粒大小等来调节,因此对合金 NPs 合成的精确控制和良好的重现性有很高的要求。为了提高它们合成的效率和重现性,最近已经开发出了各种类型的反应器的连续流动合成,而不是当前主流的间歇合成方法。在这篇综述中,我们重点介绍了合金 NPs 的连续流动合成,并首先概述了 NPs 的流动合成,特别是合金 NPs 的流动合成。随后,介绍了用于合成核壳型、分隔型、固溶体型合金 NPs 和高熵合金 NPs 的流动反应器及其化学的细节。最后,讨论了该领域的挑战和未来展望。