Suppr超能文献

利用深度学习进行机会性骨质疏松症筛查:基于队列数据集的开发和外部验证。

Opportunistic Osteoporosis Screening Using Chest Radiographs With Deep Learning: Development and External Validation With a Cohort Dataset.

机构信息

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Department of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.

出版信息

J Bone Miner Res. 2022 Feb;37(2):369-377. doi: 10.1002/jbmr.4477. Epub 2021 Dec 13.

Abstract

Osteoporosis is a common, but silent disease until it is complicated by fractures that are associated with morbidity and mortality. Over the past few years, although deep learning-based disease diagnosis on chest radiographs has yielded promising results, osteoporosis screening remains unexplored. Paired data with 13,026 chest radiographs and dual-energy X-ray absorptiometry (DXA) results from the Health Screening and Promotion Center of Asan Medical Center, between 2012 and 2019, were used as the primary dataset in this study. For the external test, we additionally used the Asan osteoporosis cohort dataset (1089 chest radiographs, 2010 and 2017). Using a well-performed deep learning model, we trained the OsPor-screen model with labels defined by DXA based diagnosis of osteoporosis (lumbar spine, femoral neck, or total hip T-score ≤ -2.5) in a supervised learning manner. The OsPor-screen model was assessed in the internal and external test sets. We performed substudies for evaluating the effect of various anatomical subregions and image sizes of input images. OsPor-screen model performances including sensitivity, specificity, and area under the curve (AUC) were measured in the internal and external test sets. In addition, visual explanations of the model to predict each class were expressed in gradient-weighted class activation maps (Grad-CAMs). The OsPor-screen model showed promising performances. Osteoporosis screening with the OsPor-screen model achieved an AUC of 0.91 (95% confidence interval [CI], 0.90-0.92) and an AUC of 0.88 (95% CI, 0.85-0.90) in the internal and external test set, respectively. Even though the medical relevance of these average Grad-CAMs is unclear, these results suggest that a deep learning-based model using chest radiographs could have the potential to be used for opportunistic automated screening of patients with osteoporosis in clinical settings. © 2021 American Society for Bone and Mineral Research (ASBMR).

摘要

骨质疏松症是一种常见但无声的疾病,直到它因与发病率和死亡率相关的骨折而变得复杂。在过去的几年中,尽管基于深度学习的胸部 X 射线疾病诊断已经取得了有希望的结果,但骨质疏松症筛查仍未得到探索。本研究的主要数据集来自 2012 年至 2019 年期间,Asan 医疗中心健康筛查和促进中心的 13026 张胸部 X 光片和双能 X 射线吸收法(DXA)结果的配对数据。对于外部测试,我们还使用了 Asan 骨质疏松症队列数据集(1089 张胸部 X 光片,2010 年和 2017 年)。我们使用表现良好的深度学习模型,以 DXA 基于骨质疏松症的诊断(腰椎、股骨颈或全髋 T 评分≤-2.5)为标签,采用监督学习的方式对 OsPor-screen 模型进行训练。在内部和外部测试集中评估了 OsPor-screen 模型。我们进行了子研究,以评估输入图像的各种解剖子区域和图像大小的效果。在内部和外部测试集中测量了 OsPor-screen 模型的性能,包括灵敏度、特异性和曲线下面积(AUC)。此外,使用梯度加权类激活图(Grad-CAMs)表达了模型预测每个类别的视觉解释。OsPor-screen 模型表现出色。骨质疏松症筛查的 OsPor-screen 模型在内部和外部测试集中的 AUC 分别为 0.91(95%置信区间[CI],0.90-0.92)和 0.88(95%CI,0.85-0.90)。尽管这些平均 Grad-CAMs 的医学相关性尚不清楚,但这些结果表明,使用胸部 X 光片的基于深度学习的模型有可能在临床环境中用于骨质疏松症患者的机会性自动筛查。©2021 年美国骨与矿物质研究协会(ASBMR)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验