Suppr超能文献

深度学习与胸部X光相遇:一种预测未来椎体压缩骨折风险的有前景的方法。

Deep learning meets chest X-rays: a promising approach for predicting future compression fracture risk.

作者信息

Chen Kai-Chieh, Chang Shan-Yueh, Chao Yuan-Ping, Tsai Dung-Jang, Chang Wei-Chou, Weng Yu-Shiou, Lin Chin, Fang Wen-Hui

机构信息

Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.

出版信息

Ther Adv Musculoskelet Dis. 2025 Jul 27;17:1759720X251357157. doi: 10.1177/1759720X251357157. eCollection 2025.

Abstract

BACKGROUND

Osteoporotic fractures are a significant global health concern, leading to disability and reduced quality of life. Existing diagnostic tools, such as dual-energy X-ray absorptiometry (DXA) and the Fracture Risk Assessment Tool, have limitations, such as dependence on structured datasets and difficulty identifying all high-risk individuals.

OBJECTIVES

This study aimed to develop and validate an AI-enabled chest X-ray (AI-CXR) model for predicting osteoporotic fracture risk, offering a noninvasive, accessible alternative.

DESIGN

This is a retrospective study.

METHODS

This study analyzed 166,571 CXR from 78,548 patients in Taiwan, with internal validation on 31,977 X-rays and external validation on 36,677 X-rays. The datasets were divided into groups with and without -scores. Radiological features such as costophrenic angle blunting and degenerative joint disease were extracted and incorporated into the predictive framework. The model's performance was assessed using concordance indices, calibration curves, and stratified risk analyses, and compared to DXA-based -scores.

RESULTS

The AI-CXR model demonstrated superior predictive accuracy compared to DXA, particularly for patients without -scores (internal validation: concordance index 0.896 vs 0.829; external validation: 0.778 vs 0.818). Among high-risk groups identified by AI-CXR, the 5-year fracture incidence was significantly higher than in low-risk groups (internal: 2.6% vs 0.3%, hazard ratio (HR): 2.01; external: 3.5% vs 0.5%, HR: 2.34). Key radiological features were more prevalent in high-risk groups, including costophrenic angle blunting and degenerative joint disease. Stratified analysis revealed consistent performance across various demographic subgroups, such as gender and age categories.

CONCLUSION

The AI-CXR model provides a cost-effective, noninvasive tool for osteoporotic fracture risk assessment, enabling improved early detection and personalized intervention across diverse clinical settings.

摘要

背景

骨质疏松性骨折是一个重大的全球健康问题,会导致残疾并降低生活质量。现有的诊断工具,如双能X线吸收法(DXA)和骨折风险评估工具,存在局限性,如依赖结构化数据集且难以识别所有高危个体。

目的

本研究旨在开发并验证一种用于预测骨质疏松性骨折风险的人工智能胸部X线(AI-CXR)模型,提供一种非侵入性、易于获取的替代方法。

设计

这是一项回顾性研究。

方法

本研究分析了台湾78548例患者的166571张胸部X线片,其中31977张用于内部验证,36677张用于外部验证。数据集被分为有和无评分的组。提取了肋膈角变钝和退行性关节病等放射学特征并纳入预测框架。使用一致性指数、校准曲线和分层风险分析评估模型性能,并与基于DXA的评分进行比较。

结果

与DXA相比,AI-CXR模型显示出更高的预测准确性,尤其是对于无评分的患者(内部验证:一致性指数0.896对0.829;外部验证:0.778对0.818)。在AI-CXR识别的高危组中,5年骨折发生率显著高于低危组(内部:2.6%对0.3%,风险比(HR):2.01;外部:3.5%对0.5%,HR:2.34)。关键放射学特征在高危组中更为普遍,包括肋膈角变钝和退行性关节病。分层分析显示,在不同的人口统计学亚组(如性别和年龄类别)中,模型性能一致。

结论

AI-CXR模型为骨质疏松性骨折风险评估提供了一种经济有效的非侵入性工具,能够在不同临床环境中改善早期检测和个性化干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c6/12304508/2f4b455f87d3/10.1177_1759720X251357157-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验