BrainNET, Health and Technology District, Surrey, BC, Canada.
Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada.
Brain Struct Funct. 2022 Jan;227(1):381-392. doi: 10.1007/s00429-021-02407-4. Epub 2021 Nov 23.
Magnetic resonance imaging (MRI) studies are sensitive to biological mechanisms of neuroplasticity in white matter (WM). In particular, diffusion tensor imaging (DTI) has been used to investigate structural changes. Historically, functional MRI (fMRI) neuroplasticity studies have been restricted to gray matter, as fMRI studies have only recently expanded to WM. The current study evaluated WM neuroplasticity pre-post motor training in healthy adults, focusing on motor learning in the non-dominant hand. Neuroplasticity changes were evaluated in two established WM regions-of-interest: the internal capsule and the corpus callosum. Behavioral improvements following training were greater for the non-dominant hand, which corresponded with MRI-based neuroplasticity changes in the internal capsule for DTI fractional anisotropy, fMRI hemodynamic response functions, and low-frequency oscillations (LFOs). In the corpus callosum, MRI-based neuroplasticity changes were detected in LFOs, DTI, and functional correlation tensors (FCT). Taken together, the LFO results converged as significant amplitude reductions, implicating a common underlying mechanism of optimized transmission through altered myelination. The structural and functional neuroplasticity findings open new avenues for direct WM investigations into mapping connectomes and advancing MRI clinical applications.
磁共振成像(MRI)研究对脑白质(WM)的神经可塑性的生物学机制敏感。特别是,扩散张量成像(DTI)已被用于研究结构变化。历史上,功能磁共振成像(fMRI)神经可塑性研究仅限于灰质,因为 fMRI 研究最近才扩展到 WM。本研究评估了健康成年人运动训练前后的 WM 神经可塑性,重点关注非优势手的运动学习。在两个已建立的 WM 感兴趣区域(内囊和胼胝体)中评估了神经可塑性变化。训练后非优势手的行为改善更大,这与内囊的 DTI 分数各向异性、 fMRI 血液动力学反应功能和低频振荡(LFO)的 MRI 神经可塑性变化相对应。在胼胝体中,在 LFO、DTI 和功能相关张量(FCT)中检测到 MRI 神经可塑性变化。总之,LFO 的结果表现出显著的振幅降低,这暗示了通过改变髓鞘优化传输的共同潜在机制。结构和功能神经可塑性的发现为直接 WM 研究映射连接组和推进 MRI 临床应用开辟了新途径。