Orchard Peter, Manickam Nandini, Ventresca Christa, Vadlamudi Swarooparani, Varshney Arushi, Rai Vivek, Kaplan Jeremy, Lalancette Claudia, Mohlke Karen L, Gallagher Katherine, Burant Charles F, Parker Stephen C J
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Genome Res. 2021 Dec;31(12):2258-2275. doi: 10.1101/gr.268482.120. Epub 2021 Nov 23.
Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.
骨骼肌平均占人体质量的比例最大,是复杂疾病和运动能力方面的关键组织。它由几种不同的细胞和肌纤维类型组成。在这里,我们优化了单核ATAC测序(snATAC-seq)以绘制冷冻人类和大鼠样本中骨骼肌细胞特异性染色质可及性图谱,以及单核RNA测序(snRNA-seq)以绘制人类细胞特异性转录组图谱。我们还对人类和大鼠肌肉样本进行了多组学分析(基因表达和染色质可及性)。我们捕捉到了I型和II型肌纤维特征,这是现有单细胞RNA测序方法通常遗漏的。我们对33,862个细胞核进行了跨模态和跨物种综合分析,识别出七种细胞类型,其丰度占所有细胞核的59.6%至1.0%。我们引入了一种基于回归的方法,通过将转录起始位点远端的ATAC-seq峰与参考增强子图谱进行比较来推断细胞类型,并显示出与基于RNA的标记基因细胞类型分配的一致性。我们在细胞特异性ATAC-seq峰中发现了与英国生物银行和糖尿病全基因组关联研究中复杂表型相关的遗传变异富集的异质性,在肌肉间充质干细胞(约占细胞核的3.5%)中富集模式最为显著。最后,我们将这些染色质可及性图谱叠加在全基因组关联研究数据上,以确定2型糖尿病信号的因果细胞类型、单核苷酸多态性(SNP)、转录因子基序和靶基因。这些人类和大鼠骨骼肌细胞类型的染色质可及性图谱是确定因果全基因组关联研究SNP和细胞类型的有用资源。