Varshney Arushi, Manickam Nandini, Orchard Peter, Tovar Adelaide, Ventresca Christa, Zhang Zhenhao, Feng Fan, Mears Joseph, Erdos Michael R, Narisu Narisu, Nishino Kirsten, Rai Vivek, Stringham Heather M, Jackson Anne U, Tamsen Tricia, Gao Chao, Yang Mao, Koues Olivia I, Welch Joshua D, Burant Charles F, Williams L Keoki, Jenkinson Chris, DeFronzo Ralph A, Norton Luke, Saramies Jouko, Lakka Timo A, Laakso Markku, Tuomilehto Jaakko, Mohlke Karen L, Kitzman Jacob O, Koistinen Heikki A, Liu Jie, Boehnke Michael, Collins Francis S, Scott Laura J, Parker Stephen C J
Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
bioRxiv. 2024 Dec 17:2023.12.15.571696. doi: 10.1101/2023.12.15.571696.
Skeletal muscle, the largest human organ by weight, is relevant in several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing cell types, regulatory elements, target genes, and causal variants. Here, we use genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing nearly half a million nuclei. We identify 13 cell types and integrate genetic variation to discover >7,000 expression quantitative trait loci (eQTL) and >100,000 chromatin accessibility QTLs (caQTL) across cell types. Learning patterns of e/caQTL sharing across cell types increased precision of effect estimates. We identify high-resolution cell-states and context-specific e/caQTL with significant genotype by context interaction. We identify nearly 2,000 eGenes colocalized with caQTL and construct causal directional maps for chromatin accessibility and gene expression. Almost 3,500 genome-wide association study (GWAS) signals across 38 relevant traits colocalize with sn-e/caQTL, most in a cell-specific manner. These signals typically colocalize with caQTL and not eQTL, highlighting the importance of population-scale chromatin profiling for GWAS functional studies. Finally, our GWAS-caQTL colocalization data reveal distinct cell-specific regulatory paradigms. Our results illuminate the genetic regulatory architecture of human skeletal muscle at high resolution epigenomic, transcriptomic, and cell-state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.
骨骼肌是人体按重量计算最大的器官,与包括2型糖尿病(T2D)在内的多种多基因代谢性状和疾病相关。确定这些性状背后的遗传机制需要精准定位细胞类型、调控元件、靶基因和因果变异。在此,我们利用基因多路复用技术,在287份冷冻的人类骨骼肌活检样本中生成了群体规模的单核(sn)染色质可及性(snATAC-seq)和转录组(snRNA-seq)图谱,这些样本代表了近50万个细胞核。我们识别出13种细胞类型,并整合遗传变异,在不同细胞类型中发现了超过7000个表达数量性状基因座(eQTL)和超过10万个染色质可及性QTL(caQTL)。了解不同细胞类型间e/caQTL共享模式提高了效应估计的精度。我们通过显著的基因型与背景相互作用识别出高分辨率的细胞状态和背景特异性e/caQTL。我们识别出近2000个与caQTL共定位的eGenes,并构建了染色质可及性和基因表达的因果定向图谱。在38个相关性状上的近3500个全基因组关联研究(GWAS)信号与sn-e/caQTL共定位,大多数是以细胞特异性方式。这些信号通常与caQTL而非eQTL共定位,凸显了群体规模染色质分析对GWAS功能研究的重要性。最后,我们的GWAS-caQTL共定位数据揭示了不同的细胞特异性调控模式。我们的结果在高分辨率的表观基因组、转录组和细胞状态尺度上阐明了人类骨骼肌的遗传调控结构,并为复杂组织和性状的群体规模多组学图谱绘制提供了模板。