Suppr超能文献

BSE49,一个多样化的、高质量的化学键分离能基准数据集。

BSE49, a diverse, high-quality benchmark dataset of separation energies of chemical bonds.

作者信息

Prasad Viki Kumar, Khalilian M Hossein, Otero-de-la-Roza Alberto, DiLabio Gino A

机构信息

Department of Chemistry, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada.

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, MALTA Consolider Team, E-33006, Oviedo, Spain.

出版信息

Sci Data. 2021 Nov 23;8(1):300. doi: 10.1038/s41597-021-01088-2.

Abstract

We present an extensive and diverse dataset of bond separation energies associated with the homolytic cleavage of covalently bonded molecules (A-B) into their corresponding radical fragments (A and B). Our dataset contains two different classifications of model structures referred to as "Existing" (molecules with associated experimental data) and "Hypothetical" (molecules with no associated experimental data). In total, the dataset consists of 4502 datapoints (1969 datapoints from the Existing and 2533 datapoints from the Hypothetical classes). The dataset covers 49 unique X-Y type single bonds (except H-H, H-F, and H-Cl), where X and Y are H, B, C, N, O, F, Si, P, S, and Cl atoms. All the reference data was calculated at the (RO)CBS-QB3 level of theory. The reference bond separation energies are non-relativistic ground-state energy differences and contain no zero-point energy corrections. This new dataset of bond separation energies (BSE49) is presented as a high-quality reference dataset for assessing and developing computational chemistry methods.

摘要

我们展示了一个广泛且多样的数据集,该数据集包含与共价键合分子(A-B)均裂为其相应自由基片段(A和B)相关的键离解能。我们的数据集包含两种不同分类的模型结构,分别称为“现有”(具有相关实验数据的分子)和“假设”(无相关实验数据的分子)。该数据集总共由4502个数据点组成(1969个数据点来自“现有”类别,2533个数据点来自“假设”类别)。该数据集涵盖49种独特的X-Y型单键(H-H、H-F和H-Cl除外),其中X和Y为H、B、C、N、O、F、Si、P、S和Cl原子。所有参考数据均在(RO)CBS-QB3理论水平上计算得出。参考键离解能为非相对论基态能量差,且不包含零点能校正。这个新的键离解能数据集(BSE49)作为一个高质量的参考数据集,用于评估和开发计算化学方法。

相似文献

3
ATOMIC-2 Protocol for Thermochemistry.热化学的ATOMIC-2协议。
J Chem Theory Comput. 2022 Jul 12;18(7):4142-4163. doi: 10.1021/acs.jctc.1c01272. Epub 2022 Jun 3.

本文引用的文献

2
Aromatic Photo-oxidation, A New Source of Atmospheric Acidity.芳香族光氧化作用:大气酸度的一个新来源
Environ Sci Technol. 2020 Jul 7;54(13):7798-7806. doi: 10.1021/acs.est.0c00526. Epub 2020 Jun 12.
4
Simulated kinetics of the atmospheric removal of aniline during daytime.模拟苯胺在白天大气去除的动力学。
Chemosphere. 2020 Sep;255:127031. doi: 10.1016/j.chemosphere.2020.127031. Epub 2020 May 10.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验