Suppr超能文献

在接近化学精度的情况下,以亚秒级的计算成本预测有机均裂键离解焓。

Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.

机构信息

Biosciences Center, National Renewable Energy Laboratory, 15103 Denver West Parkway, Golden, CO, 80401, USA.

Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA.

出版信息

Nat Commun. 2020 May 11;11(1):2328. doi: 10.1038/s41467-020-16201-z.

Abstract

Bond dissociation enthalpies (BDEs) of organic molecules play a fundamental role in determining chemical reactivity and selectivity. However, BDE computations at sufficiently high levels of quantum mechanical theory require substantial computing resources. In this paper, we develop a machine learning model capable of accurately predicting BDEs for organic molecules in a fraction of a second. We perform automated density functional theory (DFT) calculations at the M06-2X/def2-TZVP level of theory for 42,577 small organic molecules, resulting in 290,664 BDEs. A graph neural network trained on a subset of these results achieves a mean absolute error of 0.58 kcal mol (vs DFT) for BDEs of unseen molecules. We further demonstrate the model on two applications: first, we rapidly and accurately predict major sites of hydrogen abstraction in the metabolism of drug-like molecules, and second, we determine the dominant molecular fragmentation pathways during soot formation.

摘要

有机分子的键离解焓(BDE)在决定化学反应性和选择性方面起着基本作用。然而,在足够高的量子力学理论水平上进行 BDE 计算需要大量的计算资源。在本文中,我们开发了一种机器学习模型,能够在几分之一秒内准确预测有机分子的 BDE。我们在 M06-2X/def2-TZVP 理论水平上对 42,577 个小分子进行了自动密度泛函理论(DFT)计算,得到了 290,664 个 BDE。在这些结果的一个子集上训练的图神经网络对于未见分子的 BDE 的平均绝对误差为 0.58 kcal mol(相对于 DFT)。我们进一步在两个应用中展示了该模型:首先,我们快速准确地预测了类似药物分子代谢中主要的氢提取部位;其次,我们确定了在烟尘形成过程中主要的分子断裂途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/7214445/0ba2455f7a2c/41467_2020_16201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验