Biosciences Center, National Renewable Energy Laboratory, 15103 Denver West Parkway, Golden, CO, 80401, USA.
Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA.
Nat Commun. 2020 May 11;11(1):2328. doi: 10.1038/s41467-020-16201-z.
Bond dissociation enthalpies (BDEs) of organic molecules play a fundamental role in determining chemical reactivity and selectivity. However, BDE computations at sufficiently high levels of quantum mechanical theory require substantial computing resources. In this paper, we develop a machine learning model capable of accurately predicting BDEs for organic molecules in a fraction of a second. We perform automated density functional theory (DFT) calculations at the M06-2X/def2-TZVP level of theory for 42,577 small organic molecules, resulting in 290,664 BDEs. A graph neural network trained on a subset of these results achieves a mean absolute error of 0.58 kcal mol (vs DFT) for BDEs of unseen molecules. We further demonstrate the model on two applications: first, we rapidly and accurately predict major sites of hydrogen abstraction in the metabolism of drug-like molecules, and second, we determine the dominant molecular fragmentation pathways during soot formation.
有机分子的键离解焓(BDE)在决定化学反应性和选择性方面起着基本作用。然而,在足够高的量子力学理论水平上进行 BDE 计算需要大量的计算资源。在本文中,我们开发了一种机器学习模型,能够在几分之一秒内准确预测有机分子的 BDE。我们在 M06-2X/def2-TZVP 理论水平上对 42,577 个小分子进行了自动密度泛函理论(DFT)计算,得到了 290,664 个 BDE。在这些结果的一个子集上训练的图神经网络对于未见分子的 BDE 的平均绝对误差为 0.58 kcal mol(相对于 DFT)。我们进一步在两个应用中展示了该模型:首先,我们快速准确地预测了类似药物分子代谢中主要的氢提取部位;其次,我们确定了在烟尘形成过程中主要的分子断裂途径。