Wen Mingjian, Blau Samuel M, Spotte-Smith Evan Walter Clark, Dwaraknath Shyam, Persson Kristin A
Department of Materials Science and Engineering, University of California Berkeley CA 94720 USA.
Energy Technologies Area, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.
Chem Sci. 2020 Dec 8;12(5):1858-1868. doi: 10.1039/d0sc05251e.
A broad collection of technologies, including drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (-1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could consider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model's predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.
众多技术领域,包括药物代谢、生物燃料燃烧、水的光化学净化以及能量生产/存储系统中的界面钝化,都依赖于涉及分子键断裂反应的化学过程。在此背景下,一个重要的基础热力学性质是键解离能(BDE),它衡量化学键的强度。快速准确地预测任意分子的BDE将为复杂反应级联的数据驱动预测奠定基础,从而更深入地理解这些关键化学过程,并最终实现对它们的逆向设计。在本文中,我们提出了一种受化学启发的图神经网络机器学习模型BonDNet,用于快速准确地预测BDE。BonDNet将反应物和产物的分子表示之间的差异映射到反应BDE。由于使用了这种差异表示并引入了包括分子电荷在内的全局特征,它是第一个能够预测任何电荷分子的均裂和异裂BDE的机器学习模型。为了测试该模型,我们构建了一个包含中性和带电(-1和+1)分子的均裂和异裂BDE的数据集。对于未见测试数据,BonDNet的平均绝对误差(MAE)为0.022 eV,显著低于化学精度(0.043 eV)。除了能够处理以前的模型无法考虑的复杂键解离反应外,BonDNet即使在仅预测中性分子的均裂BDE时也表现出色;它在PubChem BDE数据集上的MAE为0.020 eV,比之前表现最佳的模型提高了20%。通过分析代表分子和键解离反应的特征中的模式,我们对模型的预测有了更多了解,这些模式在定性上与化学规则和直觉一致。BonDNet只是我们表示和学习化学反应性的通用方法的一个应用,未来它可以很容易地扩展到其他反应性质的预测。