Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
Regeneration Group, Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London, SE11YR, UK.
Theranostics. 2021 Oct 3;11(20):9805-9820. doi: 10.7150/thno.65203. eCollection 2021.
Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype , here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.
小胶质细胞和巨噬细胞在脊髓损伤 (SCI) 后会呈现促炎表型,这被认为有助于继发性组织退化。我们之前报道称,这部分是由于抗炎细胞因子(如 IL-4)水平较低所致。由于 IL-13 和 IL-4 共享受体,并且这两种细胞因子都能促使小胶质细胞和巨噬细胞向抗炎表型分化,因此我们研究了 SCI 后给予 IL-13 和 IL-4 是否会产生有益效果。我们在 SCI 后 48 小时向小鼠注射重组 IL-13 或 IL-4,并评估它们对小胶质细胞和巨噬细胞表型及功能结果的影响。我们还对用 IL-13 或 IL-4 处理的小鼠损伤脊髓中分离的巨噬细胞和小胶质细胞进行了 RNA 测序分析,并使用 Seahorse 技术评估了这些细胞的代谢状态。我们观察到,IL-13 在 SCI 后诱导小胶质细胞和巨噬细胞中抗炎标志物的表达,但与 IL-4 不同的是,它未能介导功能恢复。我们发现,这两种细胞因子在 SCI 后诱导了小胶质细胞和巨噬细胞的不同基因特征,并且与 IL-13 相反,IL-4 将小胶质细胞和巨噬细胞的代谢从糖酵解转变为氧化磷酸化。这些发现通过测量这些细胞的代谢谱进一步得到证实。重要的是,我们还揭示了用 IL-4 或 IL-13 刺激的巨噬细胞对神经元没有细胞毒性,但当氧化代谢被阻断时,它们会变得具有细胞毒性。这表明从糖酵解到氧化磷酸化的代谢转变是最小化小胶质细胞和巨噬细胞细胞毒性反应所必需的。这些结果表明,SCI 后小胶质细胞和巨噬细胞的代谢适应性有助于继发性损伤,而旨在增强氧化磷酸化的策略可能是一种减少神经创伤中小胶质细胞和巨噬细胞有害作用的新方法。