Chen Xinhou, Wang Hangtian, Liu Haijiang, Wang Chun, Wei Gaoshuai, Fang Chan, Wang Hanchen, Geng Chunyan, Liu Shaojie, Li Peiyan, Yu Haiming, Zhao Weisheng, Miao Jungang, Li Yutong, Wang Li, Nie Tianxiao, Zhao Jimin, Wu Xiaojun
School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.
Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China.
Adv Mater. 2022 Mar;34(9):e2106172. doi: 10.1002/adma.202106172. Epub 2022 Jan 5.
Future information technologies for low-dissipation quantum computation, high-speed storage, and on-chip communication applications require the development of atomically thin, ultracompact, and ultrafast spintronic devices in which information is encoded, stored, and processed using electron spin. Exploring low-dimensional magnetic materials, designing novel heterostructures, and generating and controlling ultrafast electron spin in 2D magnetism at room temperature, preferably in the unprecedented terahertz (THz) regime, is in high demand. Using THz emission spectroscopy driven by femtosecond laser pulses, optical THz spin-current bursts at room temperature in the 2D van der Waals ferromagnetic Fe GeTe (FGT) integrated with Bi Te as a topological insulator are successfully realized. The symmetry of the THz radiation is effectively controlled by the optical pumping incidence and external magnetic field directions, indicating that the THz generation mechanism is the inverse Edelstein effect contributed spin-to-charge conversion. Thickness-, temperature-, and structure-dependent nontrivial THz transients reveal that topology-enhanced interlayer exchange coupling increases the FGT Curie temperature to room temperature, which provides an effective approach for engineering THz spin-current pulses. These results contribute to the goal of all-optical generation, manipulation, and detection of ultrafast THz spin currents in room-temperature 2D magnetism, accelerating the development of atomically thin high-speed spintronic devices.
面向低耗散量子计算、高速存储及片上通信应用的未来信息技术,需要开发原子级薄、超紧凑且超快的自旋电子器件,其中信息利用电子自旋进行编码、存储和处理。探索低维磁性材料、设计新型异质结构以及在室温下(最好是在前所未有的太赫兹(THz)频段)二维磁性中产生并控制超快电子自旋的需求很高。利用飞秒激光脉冲驱动的太赫兹发射光谱,成功实现了在与拓扑绝缘体碲化铋集成的二维范德华铁磁体Fe GeTe(FGT)中室温下的光学太赫兹自旋电流脉冲。太赫兹辐射的对称性通过光泵浦入射和外部磁场方向得到有效控制,这表明太赫兹产生机制是由逆埃德尔斯坦效应贡献的自旋到电荷的转换。厚度、温度和结构依赖的非平凡太赫兹瞬态表明,拓扑增强的层间交换耦合将FGT居里温度提高到室温,这为设计太赫兹自旋电流脉冲提供了一种有效方法。这些结果有助于实现室温二维磁性中超快太赫兹自旋电流的全光产生、操纵和检测目标,加速原子级薄高速自旋电子器件的发展。