Cheng Yu, Zhou Faran, Teng Jing, Li Peiyan, Jiang Litong, Gong Piming, Li Yongqing, Wu Xiaojun, Kärtner Franz X, Zhao Jimin
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun. 2025 Jul 1;16(1):5656. doi: 10.1038/s41467-025-60060-5.
Antiferromagnets (AFMs) are more advantageous in realizing ultrafast spin-based processes, but remain challenging to manipulate. The lack of proper knobs in AFM-based ultrafast devices greatly hampers their applications. Here, we innovate an antiferromagnet/topological insulator (AFM/TI) heterostructure MnSe/(Bi,Sb)Te to realize laser-induced transient magnetic moment, and further demonstrate optically controllable circularly polarized ultrafast terahertz (THz) pulse generation, under zero external magnetic field. Intriguingly, we find two mechanisms underlying the ultrafast THz pulse generation: direct magnetic dipole radiation and spin-charge conversion resulted electric dipole radiation. Our findings provide a suitable platform for efficient and polarization-controllable ultrafast THz devices via optical means.
反铁磁体(AFM)在实现基于超快自旋的过程中更具优势,但操控起来仍具有挑战性。基于AFM的超快器件缺乏合适的调控手段,这极大地阻碍了它们的应用。在此,我们创新设计了一种反铁磁体/拓扑绝缘体(AFM/TI)异质结构MnSe/(Bi,Sb)Te,以实现激光诱导的瞬态磁矩,并进一步证明在零外磁场下可实现光学可控的圆偏振超快太赫兹(THz)脉冲产生。有趣的是,我们发现了超快THz脉冲产生的两种机制:直接磁偶极辐射和自旋-电荷转换产生的电偶极辐射。我们的研究结果为通过光学手段实现高效且偏振可控的超快THz器件提供了一个合适的平台。