Wang Haiyu, Wu Hao, Zhang Jie, Liu Yingjie, Chen Dongdong, Pandey Chandan, Yin Jialiang, Wei Dahai, Lei Na, Shi Shuyuan, Lu Haichang, Li Peng, Fert Albert, Wang Kang L, Nie Tianxiao, Zhao Weisheng
Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, China.
Shenyuan Honors College, Beihang University, Beijing, China.
Nat Commun. 2023 Aug 24;14(1):5173. doi: 10.1038/s41467-023-40714-y.
Two-dimensional (2D) ferromagnetic materials with unique magnetic properties have great potential for next-generation spintronic devices with high flexibility, easy controllability, and high heretointegrability. However, realizing magnetic switching with low power consumption at room temperature is challenging. Here, we demonstrate the room-temperature spin-orbit torque (SOT) driven magnetization switching in an all-van der Waals (vdW) heterostructure using an optimized epitaxial growth approach. The topological insulator BiTe not only raises the Curie temperature of FeGeTe (FGT) through interfacial exchange coupling but also works as a spin current source allowing the FGT to switch at a low current density of ~2.2×10 A/cm. The SOT efficiency is ~2.69, measured at room temperature. The temperature and thickness-dependent SOT efficiency prove that the larger SOT in our system mainly originates from the nontrivial topological origin of the heterostructure. Our experiments enable an all-vdW SOT structure and provides a solid foundation for the implementation of room-temperature all-vdW spintronic devices in the future.
具有独特磁性能的二维(2D)铁磁材料对于具有高柔韧性、易于可控性和高异质集成性的下一代自旋电子器件具有巨大潜力。然而,在室温下实现低功耗的磁开关具有挑战性。在这里,我们展示了使用优化的外延生长方法在全范德华(vdW)异质结构中实现室温自旋轨道扭矩(SOT)驱动的磁化翻转。拓扑绝缘体BiTe不仅通过界面交换耦合提高了FeGeTe(FGT)的居里温度,还作为自旋电流源,使FGT能够在约2.2×10 A/cm的低电流密度下切换。在室温下测量的SOT效率约为2.69。温度和厚度依赖的SOT效率证明,我们系统中较大的SOT主要源于异质结构的非平凡拓扑起源。我们的实验实现了全vdW SOT结构,并为未来实现室温全vdW自旋电子器件提供了坚实的基础。