Suppr超能文献

长链非编码 RNA 预测膀胱癌术后复发并建立新的分子分类系统。

Long noncoding RNAs to predict postoperative recurrence in bladder cancer and to develop a new molecular classification system.

机构信息

State Key Laboratory of Oncology in Southern China, Guangzhou, China.

Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

Cancer Med. 2022 Jan;11(2):539-552. doi: 10.1002/cam4.4443. Epub 2021 Nov 24.

Abstract

BACKGROUND

Reliable molecular markers are much needed for early prediction of recurrence in muscle-invasive bladder cancer (MIBC) patients. We aimed to build a long-noncoding RNA (lncRNA) signature to improve recurrence prediction and lncRNA-based molecular classification of MIBC.

METHODS

LncRNAs of 320 MIBC patients from the Cancer Genome Atlas (TCGA) database were analyzed, and a nomogram was established. A molecular classification system was created, and immunotherapy and chemotherapy response predictions, immune score analysis, immune infiltration analysis, and mutational data analysis were conducted. Survival analysis validation was also performed.

RESULTS

An eight-lncRNA signature classifed the patients into high- and low-risk subgroups, and these groups had significantly different (disease-free survival) DFS. The ability of the eight-lncRNA signature to make an accurate prognosis was tested using a validation dataset from our samples. The nomogram achieved a C-index of 0.719 (95% CI, 0.674-0.764). Time-dependent receiver operating characteristic curve (ROC) analysis indicated the superior prognostic accuracy of nomograms for DFS prediction (0.76, 95% CI, 0.697-0.807). Further, the four clusters (median DFS = 11.8, 15.3, 17.9, and 18.9 months, respectively) showed a high frequency of TTN (cluster 1), fibroblast growth factor receptor-3 (cluster 2), TP53 (cluster 3), and TP53 mutations (cluster 4), respectively. They were enriched with M2 macrophages (cluster 1), CD8 T cells (cluster 2), M0 macrophages (cluster 3), and M0 macrophages (cluster 4), respectively. Clusters 2 and 3 demonstrated potential sensitivity to immunotherapy and insensitivity to chemotherapy, whereas cluster 4 showed potential insensitivity to immunotherapy and sensitivity to chemotherapy.

CONCLUSIONS

The eight-lncRNA signature risk model may be a reliable prognostic signature for MIBC, which provides new insights into prediction of recurrence of MIBC. The model may help clinical decision and eventually benefit patients.

摘要

背景

对于肌层浸润性膀胱癌(MIBC)患者,可靠的分子标志物对于早期预测复发至关重要。本研究旨在建立一个长链非编码 RNA(lncRNA)特征,以改善 MIBC 的复发预测和基于 lncRNA 的分子分类。

方法

分析了癌症基因组图谱(TCGA)数据库中 320 例 MIBC 患者的 lncRNA,并建立了列线图。创建了一个分子分类系统,并进行了免疫治疗和化疗反应预测、免疫评分分析、免疫浸润分析和突变数据分析。还进行了生存分析验证。

结果

一个由 8 个 lncRNA 组成的特征将患者分为高风险和低风险亚组,这些组的(无病生存)DFS 有显著差异。使用来自我们样本的验证数据集测试了 8 个 lncRNA 特征进行准确预后的能力。列线图的 C 指数为 0.719(95%CI,0.674-0.764)。时间依赖性接收器工作特征曲线(ROC)分析表明,列线图对 DFS 预测的预后准确性更高(0.76,95%CI,0.697-0.807)。此外,四个聚类(中位 DFS 分别为 11.8、15.3、17.9 和 18.9 个月)分别显示出 TTN(聚类 1)、成纤维细胞生长因子受体 3(聚类 2)、TP53(聚类 3)和 TP53 突变(聚类 4)的高频。它们分别富含 M2 巨噬细胞(聚类 1)、CD8 T 细胞(聚类 2)、M0 巨噬细胞(聚类 3)和 M0 巨噬细胞(聚类 4)。聚类 2 和 3显示出对免疫治疗的潜在敏感性和对化疗的不敏感性,而聚类 4显示出对免疫治疗的潜在不敏感性和对化疗的敏感性。

结论

8 个 lncRNA 特征风险模型可能是 MIBC 的一种可靠预后标志物,为 MIBC 的复发预测提供了新的见解。该模型可能有助于临床决策,并最终使患者受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e68d/8729057/eae0478d5607/CAM4-11-539-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验