Suppr超能文献

利用数据链接和贝叶斯最大熵估计美国颗粒物年度浓度与死亡率之间的关联。

Estimating Associations Between Annual Concentrations of Particulate Matter and Mortality in the United States, Using Data Linkage and Bayesian Maximum Entropy.

机构信息

From the Department of Epidemiology, Johns Hopkins University.

Department of Epidemiology, University of North Carolina at Chapel Hill.

出版信息

Epidemiology. 2022 Mar 1;33(2):157-166. doi: 10.1097/EDE.0000000000001447.

Abstract

BACKGROUND

Exposure to fine particulate matter (PM2.5) is an established risk factor for human mortality. However, previous US studies have been limited to select cities or regions or to population subsets (e.g., older adults).

METHODS

Here, we demonstrate how to use the novel geostatistical method Bayesian maximum entropy to obtain estimates of PM2.5 concentrations in all contiguous US counties, 2000-2016. We then demonstrate how one could use these estimates in a traditional epidemiologic analysis examining the association between PM2.5 and rates of all-cause, cardiovascular, respiratory, and (as a negative control outcome) accidental mortality.

RESULTS

We estimated that, for a 1 log(μg/m3) increase in PM2.5 concentration, the conditional all-cause mortality incidence rate ratio (IRR) was 1.029 (95% confidence interval [CI]: 1.006, 1.053). This implies that the rate of all-cause mortality at 10 µg/m3 would be 1.020 times the rate at 5 µg/m3. IRRs were larger for cardiovascular mortality than for all-cause mortality in all gender and race-ethnicity groups. We observed larger IRRs for all-cause, nonaccidental, and respiratory mortality in Black non-Hispanic Americans than White non-Hispanic Americans. However, our negative control analysis indicated the possibility for unmeasured confounding.

CONCLUSION

We used a novel method that allowed us to estimate PM2.5 concentrations in all contiguous US counties and obtained estimates of the association between PM2.5 and mortality comparable to previous studies. Our analysis provides one example of how Bayesian maximum entropy could be used in epidemiologic analyses; future work could explore other ways to use this approach to inform important public health questions.

摘要

背景

细颗粒物(PM2.5)暴露是人类死亡的既定危险因素。然而,以前的美国研究仅限于选择城市或地区或人口亚组(例如老年人)。

方法

在这里,我们展示了如何使用新颖的地质统计学方法贝叶斯最大熵来获取 2000 年至 2016 年美国所有相邻县的 PM2.5 浓度估计值。然后,我们展示了如何在传统的流行病学分析中使用这些估计值,研究 PM2.5 与全因、心血管、呼吸和(作为负对照结果)意外死亡率之间的关联。

结果

我们估计,PM2.5 浓度每增加 1 对数(μg/m3),全因死亡率的条件发生率比(IRR)为 1.029(95%置信区间[CI]:1.006,1.053)。这意味着在 10 µg/m3 时全因死亡率的比率将是在 5 µg/m3 时的 1.020 倍。在所有性别和种族群体中,心血管死亡率的 IRR 大于全因死亡率。我们观察到黑人和非西班牙裔美国人的全因、非意外和呼吸死亡率的 IRR 大于白人和非西班牙裔美国人。然而,我们的负对照分析表明存在未测量的混杂因素的可能性。

结论

我们使用了一种新颖的方法,可以估计美国所有相邻县的 PM2.5 浓度,并获得了 PM2.5 与死亡率之间的关联估计值,与以前的研究相当。我们的分析提供了一个示例,说明贝叶斯最大熵如何可用于流行病学分析;未来的工作可以探索其他方法来利用这种方法来解决重要的公共卫生问题。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验