Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.
Mol Biol Cell. 2022 Dec 1;33(14):br23. doi: 10.1091/mbc.E22-05-0164. Epub 2022 Sep 21.
Atlastin (ATL) GTPases undergo trans dimerization and a power strokelike crossover conformational rearrangement to drive endoplasmic reticulum membrane fusion. Fusion depends on GTP, but the role of nucleotide hydrolysis has remained controversial. For instance, nonhydrolyzable GTP analogs block fusion altogether, suggesting a requirement for GTP hydrolysis in ATL dimerization and crossover, but this leaves unanswered the question of how the ATL dimer is disassembled after fusion. We recently used the truncated cytoplasmic domain of wild-type ATL (ATL) and a novel hydrolysis-deficient D127N variant in single turnover assays to reveal that dimerization and crossover consistently precede GTP hydrolysis, with hydrolysis coinciding more closely with dimer disassembly. Moreover, while nonhydrolyzable analogs can bind the ATL G domain, they fail to fully recapitulate the GTP-bound state. This predicted that nucleotide hydrolysis would be dispensable for fusion. Here we report that the D127N variant of full-length ATL drives both outer and inner leaflet membrane fusion with little to no detectable hydrolysis of GTP. However, the trans dimer fails to disassemble and subsequent rounds of fusion fail to occur. Our findings confirm that ATL mediated fusion is driven in the GTP-bound state, with nucleotide hydrolysis serving to reset the fusion machinery for recycling.
最后,ATL(Atlastin)GTPases 经历跨二聚体化和类似强力冲程的交叉构象重排,以驱动内质网膜融合。融合依赖于 GTP,但核苷酸水解的作用一直存在争议。例如,不可水解的 GTP 类似物完全阻止融合,这表明 ATL 二聚体和交叉构象的 GTP 水解是必需的,但这并没有回答融合后 ATL 二聚体如何解离的问题。我们最近使用野生型 ATL(ATL)的截断细胞质结构域和一种新的水解缺陷型 D127N 变体进行单轮测定,揭示了二聚体化和交叉构象始终先于 GTP 水解,而水解更紧密地与二聚体解离相关。此外,虽然不可水解的类似物可以结合 ATL G 结构域,但它们无法完全再现 GTP 结合状态。这表明核苷酸水解对于融合是可有可无的。在这里,我们报告全长 ATL 的 D127N 变体驱动外叶和内叶膜融合,几乎没有可检测到的 GTP 水解。然而,跨二聚体不能解离,随后的融合回合无法进行。我们的发现证实了 ATL 介导的融合是在 GTP 结合状态下驱动的,核苷酸水解用于为循环回收重置融合机制。