Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2021 Dec 22;143(50):21350-21363. doi: 10.1021/jacs.1c10145. Epub 2021 Nov 24.
The inherent atomistic precision of synthetic chemistry enables bottom-up structural control over quantum bits, or qubits, for quantum technologies. Tuning paramagnetic molecular qubits that feature optical-spin initialization and readout is a crucial step toward designing bespoke qubits for applications in quantum sensing, networking, and computing. Here, we demonstrate that the electronic structure that enables optical-spin initialization and readout for = 1, Cr(aryl), where aryl = 2,4-dimethylphenyl (), -tolyl (), and 2,3-dimethylphenyl (), is readily translated into Cr(alkyl) compounds, where alkyl = 2,2,2-triphenylethyl (), (trimethylsilyl)methyl (), and cyclohexyl (). The small ground state zero field splitting values (<5 GHz) for - allowed for coherent spin manipulation at X-band microwave frequency, enabling temperature-, concentration-, and orientation-dependent investigations of the spin dynamics. Electronic absorption and emission spectroscopy confirmed the desired electronic structures for -, which exhibit photoluminescence from 897 to 923 nm, while theoretical calculations elucidated the varied bonding interactions of the aryl and alkyl Cr compounds. The combined experimental and theoretical comparison of Cr(aryl) and Cr(alkyl) systems illustrates the impact of the ligand field on both the ground state spin structure and excited state manifold, laying the groundwork for the design of structurally precise optically addressable molecular qubits.
合成化学固有的原子精度使得能够对量子位(即量子比特)进行自下而上的结构控制,用于量子技术。调整具有光自旋初始化和读出功能的顺磁分子量子比特是设计用于量子传感、网络和计算应用的定制量子比特的关键步骤。在这里,我们证明了使光学自旋初始化和读出成为可能的电子结构,其中 = 1,Cr(芳基),其中芳基 = 2,4-二甲基苯基(),-甲苯基()和 2,3-二甲基苯基(),很容易转化为 Cr(烷基)化合物,其中烷基 = 2,2,2-三苯乙基(),(三甲基甲硅烷基)甲基()和环己基()。- 的小基态零场分裂值(<5 GHz)允许在 X 波段微波频率下进行相干自旋操纵,从而能够进行温度、浓度和取向依赖的自旋动力学研究。电子吸收和发射光谱证实了 - 的所需电子结构,其发射光从 897 到 923nm,而理论计算阐明了芳基和烷基 Cr 化合物的不同键合相互作用。Cr(芳基)和 Cr(烷基)系统的组合实验和理论比较说明了配体场对基态自旋结构和激发态多重态的影响,为设计结构精确的光可寻址分子量子比特奠定了基础。