Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48019.
Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2108534118.
The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative "engram") neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
海马体对于将短暂的经历巩固成长久的记忆至关重要。学习后睡眠有助于记忆巩固,尽管其潜在的细胞机制在很大程度上尚不清楚。我们采用了一种无偏倚的方法来研究这个问题,使用了一种与海马介导的、依赖睡眠的记忆巩固(情境性恐惧记忆)相关的小鼠模型。由于突触可塑性与神经元细胞膜(例如,受体)和细胞质(例如,细胞骨架元素)的变化有关,因此我们描述了这些细胞区室如何受到学习以及随后的睡眠或睡眠剥夺(SD)的影响。核糖体亲和纯化用于在不同的亚细胞区室(细胞质和膜)和不同的细胞群体(整个海马体、Camk2a+神经元或磷酸化核糖体亚基 S6[pS6+]的高度活跃神经元)中对核糖体相关 RNA 进行分析。我们检查了转录谱如何随睡眠与 SD 和先前学习(情境性恐惧条件反射;CFC)的变化而变化。虽然睡眠剥夺改变了许多细胞质核糖体转录本,但 CFC 几乎没有改变,并且 CFC 驱动的变化被随后的 SD 阻断。相比之下,SD 对膜结合(MB)核糖体上的很少转录本产生影响,而学习则改变了更多的转录本(包括长非编码 RNA[lncRNA])。受 CFC 影响最大的细胞途径与结构重塑有关。对睡眠和 SD 小鼠在 CFC 后 MB 转录本谱的比较表明,Camk2a+神经元中的细胞代谢变化和高度活跃的 pS6+(推定的“记忆痕迹”)神经元中的蛋白质合成变化是 SD 破坏的生物学过程。这些发现为学习如何影响海马体神经元提供了深入的了解,并表明 SD 对记忆巩固的影响是细胞类型和亚细胞区室特异性的。