Suppr超能文献

睡眠缺失与清醒体验对大脑可塑性的影响:平行还是正交?

Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal?

机构信息

Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands.

Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Trends Neurosci. 2020 Jun;43(6):385-393. doi: 10.1016/j.tins.2020.03.010. Epub 2020 Apr 16.

Abstract

Recent studies on the effects of sleep deprivation on synaptic plasticity have yielded discrepant results. Sleep deprivation studies using novelty exposure as a means to keep animals awake suggests that sleep (compared with wake) leads to widespread reductions in net synaptic strength. By contrast, sleep deprivation studies using approaches avoiding novelty-induced arousal (i.e., gentle handling) suggest that sleep can promote synaptic growth and strengthening. How can these discrepant findings be reconciled? Here, we discuss how varying methodologies for the experimental disruption of sleep (with differential introduction of novel experiences) could fundamentally alter the experimental outcome with regard to synaptic plasticity. Thus, data from experiments aimed at assessing the relative impact of sleep versus wake on the brain may instead reflect the quality of the waking experience itself. The highlighted work suggests that brain plasticity resulting from novel experiences versus wake per se has unique and distinct features.

摘要

最近关于睡眠剥夺对突触可塑性影响的研究得出了不一致的结果。使用新奇暴露作为使动物保持清醒的手段的睡眠剥夺研究表明,与清醒相比,睡眠会导致净突触强度广泛降低。相比之下,使用避免新奇诱导觉醒的方法(即温和处理)的睡眠剥夺研究表明,睡眠可以促进突触生长和增强。如何调和这些不一致的发现呢?在这里,我们讨论了实验性破坏睡眠的不同方法(通过不同程度的引入新经验)如何从根本上改变关于突触可塑性的实验结果。因此,旨在评估睡眠与清醒对大脑相对影响的数据,可能反而反映了清醒体验本身的质量。强调的工作表明,来自新奇体验和清醒本身的大脑可塑性具有独特而不同的特征。

相似文献

1
Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal?
Trends Neurosci. 2020 Jun;43(6):385-393. doi: 10.1016/j.tins.2020.03.010. Epub 2020 Apr 16.
3
The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function.
Sleep Med Rev. 2018 Jun;39:3-11. doi: 10.1016/j.smrv.2017.05.002. Epub 2017 May 18.
4
Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data.
Front Neural Circuits. 2017 Sep 6;11:61. doi: 10.3389/fncir.2017.00061. eCollection 2017.
5
Synaptic plasticity model of therapeutic sleep deprivation in major depression.
Sleep Med Rev. 2016 Dec;30:53-62. doi: 10.1016/j.smrv.2015.11.003. Epub 2015 Nov 30.
6
Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex.
Nat Commun. 2016 Aug 23;7:12455. doi: 10.1038/ncomms12455.
8
Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice.
Brain Res Bull. 2008 Mar 28;75(5):591-7. doi: 10.1016/j.brainresbull.2007.10.040. Epub 2007 Nov 20.
9
Synaptic plasticity along the sleep-wake cycle: implications for epilepsy.
Epilepsy Behav. 2009 Jan;14 Suppl 1:47-53. doi: 10.1016/j.yebeh.2008.09.026.
10
Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.
Sleep. 2017 Jul 1;40(7). doi: 10.1093/sleep/zsx098.

引用本文的文献

1
A unified framework to model synaptic dynamics during the sleep-wake cycle.
PLoS Biol. 2025 Jun 12;23(6):e3003198. doi: 10.1371/journal.pbio.3003198. eCollection 2025 Jun.
4
Sleep maintains excitatory synapse diversity in the cortex and hippocampus.
Curr Biol. 2024 Aug 19;34(16):3836-3843.e5. doi: 10.1016/j.cub.2024.07.032. Epub 2024 Aug 2.
5
Structural neuroplasticity after sleep loss modifies behavior and requires neurexin and neuroligin.
iScience. 2024 Mar 11;27(4):109477. doi: 10.1016/j.isci.2024.109477. eCollection 2024 Apr 19.
6
Sleep-dependent engram reactivation during hippocampal memory consolidation associated with subregion-specific biosynthetic changes.
iScience. 2024 Mar 4;27(4):109408. doi: 10.1016/j.isci.2024.109408. eCollection 2024 Apr 19.
7
Overnight neuronal plasticity and adaptation to emotional distress.
Nat Rev Neurosci. 2024 Apr;25(4):253-271. doi: 10.1038/s41583-024-00799-w. Epub 2024 Mar 5.
8
Sleep restores an optimal computational regime in cortical networks.
Nat Neurosci. 2024 Feb;27(2):328-338. doi: 10.1038/s41593-023-01536-9. Epub 2024 Jan 5.
10
FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function.
Front Syst Neurosci. 2023 Jun 19;17:1212213. doi: 10.3389/fnsys.2023.1212213. eCollection 2023.

本文引用的文献

1
Sex differences within sleep in gonadally intact rats.
Sleep. 2020 May 12;43(5). doi: 10.1093/sleep/zsz289.
3
Novelty and Novel Objects Increase c-Fos Immunoreactivity in Mossy Cells in the Mouse Dentate Gyrus.
Neural Plast. 2019 Aug 27;2019:1815371. doi: 10.1155/2019/1815371. eCollection 2019.
4
Evidence for sleep-dependent synaptic renormalization in mouse pups.
Sleep. 2019 Oct 21;42(11). doi: 10.1093/sleep/zsz184.
6
How rhythms of the sleeping brain tune memory and synaptic plasticity.
Sleep. 2019 Jul 8;42(7). doi: 10.1093/sleep/zsz095.
8
Hippocampal Network Oscillations Rescue Memory Consolidation Deficits Caused by Sleep Loss.
Cereb Cortex. 2018 Oct 1;28(10):3711-3723. doi: 10.1093/cercor/bhy174.
9
Sleep loss disrupts Arc expression in dentate gyrus neurons.
Neurobiol Learn Mem. 2019 Apr;160:73-82. doi: 10.1016/j.nlm.2018.04.006. Epub 2018 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验