Suppr超能文献

利用原始加速度计信号预测脊髓损伤手动轮椅使用者的身体活动强度。

Predicting physical activity intensity using raw accelerometer signals in manual wheelchair users with spinal cord injury.

作者信息

Shwetar Yousif, Huang Zijian, Veerubhotla Akhila, Knezevic Steven, Hong EunKyoung, Spungen Ann M, Ding Dan

机构信息

Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.

Department of Rehabilitation Sciences and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Spinal Cord. 2022 Feb;60(2):149-156. doi: 10.1038/s41393-021-00728-z. Epub 2021 Nov 24.

Abstract

STUDY DESIGN

Cross-sectional validation study.

OBJECTIVES

The performance of previously published physical activity (PA) intensity cutoff thresholds based on proprietary ActiGraph counts for manual wheelchair users (MWUs) with spinal cord injury (SCI) was initially evaluated using an out-of-sample dataset of 60 individuals with SCI. Two types of PA intensity classification models based on raw accelerometer signals were developed and evaluated.

SETTING

Research institutions in Pittsburgh PA, Birmingham AL, and Bronx NY.

METHODS

Data were collected from 60 MWUs with SCI who followed a structured activity protocol while wearing an ActiGraph activity monitor on their dominant wrist and portable metabolic cart which measured criterion PA intensity. Data was used to assess published models as well as develop and assess custom models using recall, specificity, precision, as well as normalized Mathew's correlation coefficient (nMCC).

RESULTS

All the models performed well for predicting sedentary vs non-sedentary activity, yielding an nMCC of 0.87-0.90. However, all models demonstrated inadequate performance for predicting moderate to vigorous PA (MVPA) with an nMCC of 0.76-0.82.

CONCLUSIONS

The mean absolute deviation (MAD) cutoff threshold yielded the best performance for predicting sedentary vs non-sedentary PA and may be used for tracking daily sedentary activity. None of the models displayed strong performance for MVPA vs non-MVPA. Future studies should investigate combining physiological measures with accelerometry to yield better prediction accuracies for MVPA.

摘要

研究设计

横断面验证研究。

目的

最初使用60名脊髓损伤(SCI)个体的样本外数据集,对先前发表的基于专有ActiGraph计数的体力活动(PA)强度截止阈值在脊髓损伤(SCI)的手动轮椅使用者(MWU)中的表现进行评估。开发并评估了两种基于原始加速度计信号的PA强度分类模型。

地点

宾夕法尼亚州匹兹堡、阿拉巴马州伯明翰和纽约州布朗克斯的研究机构。

方法

从60名患有SCI的MWU收集数据,这些个体遵循结构化活动方案,同时在其优势手腕佩戴ActiGraph活动监测器,并使用便携式代谢推车测量标准PA强度。数据用于评估已发表的模型,以及使用召回率、特异性、精确率以及归一化马修相关系数(nMCC)开发和评估定制模型。

结果

所有模型在预测久坐与非久坐活动方面表现良好,nMCC为0.87 - 0.90。然而,所有模型在预测中度至剧烈PA(MVPA)方面表现不足,nMCC为0.76 - 0.82。

结论

平均绝对偏差(MAD)截止阈值在预测久坐与非久坐PA方面表现最佳,可用于跟踪每日久坐活动。没有一个模型在MVPA与非MVPA方面表现出强大性能。未来的研究应调查将生理测量与加速度测量相结合,以提高MVPA的预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验