Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
Nature. 2021 Dec;600(7888):324-328. doi: 10.1038/s41586-021-04144-4. Epub 2021 Nov 24.
Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2), which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers could promote mutagenesis.
激活诱导胞嘧啶脱氨酶 (AID) 催化免疫球蛋白基因中脱氧胞苷的脱氨作用,将其转化为脱氧尿嘧啶,从而诱导体细胞超突变和类别转换重组。AID 产生的脱氧尿嘧啶被颠覆的碱基切除和错配修复途径识别和处理,以确保 B 细胞中的诱变结果。然而,为什么这些 DNA 修复途径不能准确修复 AID 诱导的损伤仍然未知。在这里,我们使用全基因组 CRISPR 筛选,表明 FAM72A 是易错处理脱氧尿嘧啶的主要决定因素。Fam72a 缺陷的 CH12F3-2 B 细胞和 Fam72a 小鼠的原代 B 细胞在免疫球蛋白和 Bcl6 基因上的类别转换重组和体细胞超突变频率降低,全基因组脱氧尿嘧啶减少。Fam72a 小鼠 B 细胞中的体细胞超突变谱与尿嘧啶 DNA 糖基化酶 2 (UNG2) 缺陷小鼠观察到的相反,这表明 UNG2 在 FAM72A 缺陷细胞中过度活跃。事实上,FAM72A 与 UNG2 结合,导致细胞周期 G1 期 UNG2 蛋白水平降低,与 AID 活性峰值一致。因此,FAM72A 导致 U·G 错配持续到 S 期,导致错配修复的易错处理。通过使通常能有效从 DNA 中去除脱氧尿嘧啶的 DNA 修复途径失活,FAM72A 使 AID 能够充分发挥其对抗体成熟的作用。这项工作在癌症方面具有重要意义,因为许多癌症中观察到的 FAM72A 过表达可能会促进突变。