Suppr超能文献

聚焦超声刺激引起的颅内电极移位的研究。

Investigation of displacement of intracranial electrode induced by focused ultrasound stimulation.

作者信息

Kim Min Gon, Yu Kai, Niu Xiaodan, He Bin

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

IEEE Trans Instrum Meas. 2021;70. doi: 10.1109/tim.2021.3125978. Epub 2021 Nov 13.

Abstract

Transcranial focused ultrasound (tFUS) is an emerging neuromodulation technique to modulate brain activity non-invasively with high spatial specificity and focality. Given the influence of tFUS on brain activity, combining tFUS with multi-channel intracranial electrophysiological recordings enables monitoring of the activity of large populations of neurons with high temporal resolution. However, the physical interactions between tFUS and the electrode may affect a reliable assessment of neuronal activity, which remains poorly understood. In this paper, high-frequency ultrasound (HFUS) system was developed and integrated into tFUS neuromodulation system. The performance of the HFUS-based displacement tracking and analysis was evaluated by the theoretical analysis in the literature. The effects of various pressure levels on the displacements of the silicon-based microelectrode array in brain tissue were investigated. The developed approach was capable of tracking and measuring the motion of a solid sphere in a tissue-mimicking phantom and measured displacements were comparable to theoretical predictions. The significant changes in the averaged peak displacements of the microelectrode array in brain were observed with a pulse duration of 200 μs and a peak-to-peak pressure from 131 kPa at a center frequency of 500 kHz compared with the values from the negative control group. The present results demonstrate the relationship between several pressure levels and displacements of the microelectrode array in brain through the developed approach. This approach can be used to determine a vibration-free threshold of ultrasound parameters in multi-channel intracranial recordings for a reliable assessment of electrophysiological activities of living neurons.

摘要

经颅聚焦超声(tFUS)是一种新兴的神经调节技术,可通过高空间特异性和聚焦性以非侵入方式调节大脑活动。鉴于tFUS对大脑活动的影响,将tFUS与多通道颅内电生理记录相结合,能够以高时间分辨率监测大量神经元的活动。然而,tFUS与电极之间的物理相互作用可能会影响对神经元活动的可靠评估,对此人们仍然知之甚少。在本文中,开发了高频超声(HFUS)系统并将其集成到tFUS神经调节系统中。通过文献中的理论分析评估了基于HFUS的位移跟踪和分析性能。研究了不同压力水平对脑组织中硅基微电极阵列位移的影响。所开发的方法能够跟踪和测量仿组织体模中实心球体的运动,并且测量的位移与理论预测值相当。与阴性对照组的值相比,在中心频率为500 kHz、脉冲持续时间为200 μs、峰-峰压力为131 kPa时,观察到大脑中微电极阵列的平均峰值位移有显著变化。目前的结果通过所开发的方法证明了几种压力水平与大脑中微电极阵列位移之间的关系。这种方法可用于确定多通道颅内记录中超声参数的无振动阈值,以便可靠地评估活神经元的电生理活动。

相似文献

引用本文的文献

本文引用的文献

9
Neurons differentiate magnitude and location of mechanical stimuli.神经元区分机械刺激的大小和位置。
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):848-856. doi: 10.1073/pnas.1909933117. Epub 2019 Dec 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验