Suppr超能文献

用于自闭症谱系障碍识别的判别式字典学习

Discriminative Dictionary Learning for Autism Spectrum Disorder Identification.

作者信息

Liu Wenbo, Li Ming, Zou Xiaobing, Raj Bhiksha

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States.

School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Comput Neurosci. 2021 Nov 8;15:662401. doi: 10.3389/fncom.2021.662401. eCollection 2021.

Abstract

Autism Spectrum Disorder (ASD) is a group of lifelong neurodevelopmental disorders with complicated causes. A key symptom of ASD patients is their impaired interpersonal communication ability. Recent study shows that face scanning patterns of individuals with ASD are often different from those of typical developing (TD) ones. Such abnormality motivates us to study the feasibility of identifying ASD children based on their face scanning patterns with machine learning methods. In this paper, we consider using the bag-of-words (BoW) model to encode the face scanning patterns, and propose a novel dictionary learning method based on dual mode seeking for better BoW representation. Unlike k-means which is broadly used in conventional BoW models to learn dictionaries, the proposed method captures discriminative information by finding atoms which maximizes both the purity and coverage of belonging samples within one class. Compared to the rich literature of ASD studies from psychology and neural science, our work marks one of the relatively few attempts to directly identify high-functioning ASD children with machine learning methods. Experiments demonstrate the superior performance of our method with considerable gain over several baselines. Although the proposed work is yet too preliminary to directly replace existing autism diagnostic observation schedules in the clinical practice, it shed light on future applications of machine learning methods in early screening of ASD.

摘要

自闭症谱系障碍(ASD)是一组病因复杂的终身性神经发育障碍。ASD患者的一个关键症状是其人际沟通能力受损。最近的研究表明,ASD个体的面部扫描模式通常与典型发育(TD)个体不同。这种异常促使我们研究使用机器学习方法基于面部扫描模式识别ASD儿童的可行性。在本文中,我们考虑使用词袋(BoW)模型对面部扫描模式进行编码,并提出一种基于双模式搜索的新颖字典学习方法,以获得更好的BoW表示。与传统BoW模型中广泛使用的k均值算法来学习字典不同,该方法通过找到使同一类中归属样本的纯度和覆盖率最大化的原子来捕获判别信息。与心理学和神经科学领域丰富的ASD研究文献相比,我们的工作是相对较少的直接使用机器学习方法识别高功能ASD儿童的尝试之一。实验证明了我们的方法相对于几个基线具有显著优势的卓越性能。尽管所提出的工作还过于初步,无法在临床实践中直接取代现有的自闭症诊断观察量表,但它为机器学习方法在ASD早期筛查中的未来应用提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c94/8606656/e8d9ccc7b26f/fncom-15-662401-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验