Suppr超能文献

单细胞基因表达与空间信息的混合聚类:集成非负矩阵分解和K均值算法

Hybrid Clustering of Single-Cell Gene Expression and Spatial Information Integrated NMF and K-Means.

作者信息

Oh Sooyoun, Park Haesun, Zhang Xiuwei

机构信息

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

Front Genet. 2021 Nov 8;12:763263. doi: 10.3389/fgene.2021.763263. eCollection 2021.

Abstract

Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integration. We offer an integrated analysis of the spatial location and gene expression profiles of cells to determine their identity. We propose scHybridNMF (single-cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering to cluster high-dimensional gene expression and low-dimensional location data. We show that, under multiple scenarios, including the cases where there is a small number of genes profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means, and an existing method that uses a hidden Markov random field to encode cell location and gene expression data for cell type identification.

摘要

单细胞转录组学的进展使我们能够研究单个细胞的特性。这促成了新细胞类型的发现以及它们的高分辨率组织图谱。测量此类数据多种模态的技术增加了更多细节,但也使数据整合变得复杂。我们对细胞的空间位置和基因表达谱进行综合分析以确定它们的特性。我们提出了scHybridNMF(单细胞混合非负矩阵分解),它通过将稀疏非负矩阵分解(sparse NMF)与k均值聚类相结合来对高维基因表达和低维位置数据进行聚类,从而实现细胞类型识别。我们表明,在多种情况下,包括所分析基因数量较少以及位置数据有噪声的情况,scHybridNMF优于sparse NMF、k均值以及一种现有的使用隐马尔可夫随机场对细胞位置和基因表达数据进行编码以进行细胞类型识别的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验