Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.
University of Basel, Petersplatz 1, 4001 Basel, Switzerland.
Development. 2019 Jun 27;146(12):dev176727. doi: 10.1242/dev.176727.
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
复杂的 3D 组织是在发育过程中,按照时间和空间上的严格组织事件而产生的。特别是,基因调控网络和单细胞之间的局部相互作用导致了组织和生物体水平上的涌现特性。为了理解组织设计的原则,我们需要在特定的时间点对单个细胞进行特征描述,但我们也需要考虑多个细胞在不同的时空尺度上的集体行为。近年来,强大的单细胞方法已经被开发出来,用于对组织中的细胞进行特征描述,并解决以下具有挑战性的问题:不同的组织如何在整个发育过程中形成,如何在体内平衡中维持,以及在损伤和疾病后如何修复。这些方法导致了与单个细胞中 mRNA 和蛋白质丰度相关的数据的大量增加。正如我们在这里回顾的那样,这些新技术,结合实时成像,现在使我们能够在单细胞水平上定量地弥合空间和时间信息,并生成对组织发育的机制理解。