Suppr超能文献

基于似然的提升技术的生存分析联合建模方法。

Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques.

机构信息

Chair of Spatial Data Science and Statistical Learning, Georg August University, Germany.

Department of Statistics, TU Dortmund University, Germany.

出版信息

Comput Math Methods Med. 2021 Nov 15;2021:4384035. doi: 10.1155/2021/4384035. eCollection 2021.

Abstract

Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all kinds of possible extensions.

摘要

联合模型是一类强大的统计模型,适用于任何记录事件时间和纵向结果的数据,通过在联合似然中连接纵向和事件时间数据,从而在没有可能的偏差的情况下量化两个结果之间的关联。为了使联合模型能够进行正则化和变量选择,已经提出了一种统计提升算法,该算法使用组件梯度提升技术拟合联合模型。然而,这些方法存在众所周知的局限性,即它们为纵向分析中的随机效应提供了不平衡的更新程序,并且倾向于对生存分析中的时变协变量返回有偏差的效应估计。在本文中,我们将基于似然的提升技术应用于联合模型框架,并提出了一种新的算法,以改进梯度提升存在局限性的推断。该算法代表了一种允许生存分析中时变协变量的新的提升方法,此外还为联合模型提供了变量选择,这通过模拟和真实世界应用(如 HIV 感染者的 CD4 细胞计数建模)进行了评估。总体而言,该方法在变量选择性质方面表现出色,代表了一种在生存分析中处理时变协变量的可访问的提升方法,为各种可能的扩展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ee7/8608498/77cbd824ad3c/CMMM2021-4384035.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验