文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在皮肤癌检测中的应用:范围综述。

Artificial Intelligence for Skin Cancer Detection: Scoping Review.

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States.

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.

出版信息

J Med Internet Res. 2021 Nov 24;23(11):e22934. doi: 10.2196/22934.


DOI:10.2196/22934
PMID:34821566
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8663507/
Abstract

BACKGROUND: Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, artificial intelligence (AI) tools are being used, including shallow and deep machine learning-based methodologies that are trained to detect and classify skin cancer using computer algorithms and deep neural networks. OBJECTIVE: The aim of this study was to identify and group the different types of AI-based technologies used to detect and classify skin cancer. The study also examined the reliability of the selected papers by studying the correlation between the data set size and the number of diagnostic classes with the performance metrics used to evaluate the models. METHODS: We conducted a systematic search for papers using Institute of Electrical and Electronics Engineers (IEEE) Xplore, Association for Computing Machinery Digital Library (ACM DL), and Ovid MEDLINE databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. The studies included in this scoping review had to fulfill several selection criteria: being specifically about skin cancer, detecting or classifying skin cancer, and using AI technologies. Study selection and data extraction were independently conducted by two reviewers. Extracted data were narratively synthesized, where studies were grouped based on the diagnostic AI techniques and their evaluation metrics. RESULTS: We retrieved 906 papers from the 3 databases, of which 53 were eligible for this review. Shallow AI-based techniques were used in 14 studies, and deep AI-based techniques were used in 39 studies. The studies used up to 11 evaluation metrics to assess the proposed models, where 39 studies used accuracy as the primary evaluation metric. Overall, studies that used smaller data sets reported higher accuracy. CONCLUSIONS: This paper examined multiple AI-based skin cancer detection models. However, a direct comparison between methods was hindered by the varied use of different evaluation metrics and image types. Performance scores were affected by factors such as data set size, number of diagnostic classes, and techniques. Hence, the reliability of shallow and deep models with higher accuracy scores was questionable since they were trained and tested on relatively small data sets of a few diagnostic classes.

摘要

背景:皮肤癌是影响人类的最常见癌症类型。传统的皮肤癌诊断方法成本高、需要专业医生且耗时。因此,为了帮助诊断皮肤癌,人工智能 (AI) 工具被用于包括基于浅层和深层机器学习的方法,这些方法使用计算机算法和深度神经网络来训练以检测和分类皮肤癌。

目的:本研究旨在识别和分组用于检测和分类皮肤癌的不同类型的基于 AI 的技术。该研究还通过研究数据集大小与诊断类别数量与用于评估模型的性能指标之间的相关性,检查了所选论文的可靠性。

方法:我们按照系统评价和荟萃分析扩展的首选报告项目 (PRISMA-ScR) 指南,使用 IEEE Xplore、ACM 数字图书馆 (ACM DL) 和 Ovid MEDLINE 数据库对论文进行了系统搜索。本范围综述中纳入的研究必须满足以下几个选择标准:专门针对皮肤癌、检测或分类皮肤癌、以及使用 AI 技术。两名评审员独立进行研究选择和数据提取。提取的数据进行了叙述性综合,其中根据诊断 AI 技术及其评估指标对研究进行了分组。

结果:我们从 3 个数据库中检索到 906 篇论文,其中 53 篇符合本综述要求。浅层 AI 技术在 14 项研究中使用,深层 AI 技术在 39 项研究中使用。研究使用了多达 11 种评估指标来评估提出的模型,其中 39 项研究使用准确率作为主要评估指标。总体而言,使用较小数据集的研究报告的准确率更高。

结论:本文检查了多种基于 AI 的皮肤癌检测模型。然而,由于不同评估指标和图像类型的使用不同,直接比较方法受到阻碍。性能得分受到数据集中的大小、诊断类别数量和技术等因素的影响。因此,具有较高准确率得分的浅层和深层模型的可靠性是有问题的,因为它们是在少数诊断类别相对较小的数据上进行训练和测试的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/af20cac15bec/jmir_v23i11e22934_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/df0344cc56e7/jmir_v23i11e22934_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/6191f80e0ab5/jmir_v23i11e22934_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/001f1ae72219/jmir_v23i11e22934_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/4a5b371e31a3/jmir_v23i11e22934_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/a615478809ad/jmir_v23i11e22934_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/af20cac15bec/jmir_v23i11e22934_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/df0344cc56e7/jmir_v23i11e22934_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/6191f80e0ab5/jmir_v23i11e22934_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/001f1ae72219/jmir_v23i11e22934_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/4a5b371e31a3/jmir_v23i11e22934_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/a615478809ad/jmir_v23i11e22934_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/8663507/af20cac15bec/jmir_v23i11e22934_fig6.jpg

相似文献

[1]
Artificial Intelligence for Skin Cancer Detection: Scoping Review.

J Med Internet Res. 2021-11-24

[2]
Artificial Intelligence for the Prediction and Early Diagnosis of Pancreatic Cancer: Scoping Review.

J Med Internet Res. 2023-3-31

[3]
Approaches for the Use of AI in Workplace Health Promotion and Prevention: Systematic Scoping Review.

JMIR AI. 2024-8-20

[4]
Application of Artificial Intelligence in Community-Based Primary Health Care: Systematic Scoping Review and Critical Appraisal.

J Med Internet Res. 2021-9-3

[5]
Diagnostic Performance of Artificial Intelligence-Based Methods for Tuberculosis Detection: Systematic Review.

J Med Internet Res. 2025-3-7

[6]
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.

J Med Internet Res. 2024-11-28

[7]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[8]
Wearable Artificial Intelligence for Sleep Disorders: Scoping Review.

J Med Internet Res. 2025-5-6

[9]
Current Technological Advances in Dysphagia Screening: Systematic Scoping Review.

J Med Internet Res. 2025-5-5

[10]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

引用本文的文献

[1]
A dual-stream deep learning framework for skin cancer classification using histopathological-inherited and vision-based feature extraction.

Sci Rep. 2025-9-2

[2]
Dual-stage segmentation and classification framework for skin lesion analysis using deep neural network.

Digit Health. 2025-7-13

[3]
Mobile applications for skin cancer detection are vulnerable to physical camera-based adversarial attacks.

Sci Rep. 2025-5-24

[4]
Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review.

BMC Med Imaging. 2025-5-7

[5]
The Use of Artificial Intelligence for Skin Cancer Detection in Asia-A Systematic Review.

Diagnostics (Basel). 2025-4-7

[6]
Generative Artificial Intelligence in Medical Education-Policies and Training at US Osteopathic Medical Schools: Descriptive Cross-Sectional Survey.

JMIR Med Educ. 2025-2-11

[7]
Decoding skin cancer classification: perspectives, insights, and advances through researchers' lens.

Sci Rep. 2024-12-18

[8]
The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach.

Diagnostics (Basel). 2024-7-10

[9]
A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis.

NPJ Digit Med. 2024-5-14

[10]
Trained neural networking framework based skin cancer diagnosis and categorization using grey wolf optimization.

Sci Rep. 2024-4-24

本文引用的文献

[1]
An Efficient Skin Cancer Diagnostic System Using Bendlet Transform and Support Vector Machine.

An Acad Bras Cienc. 2020

[2]
DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images.

BMC Bioinformatics. 2020-3-11

[3]
Convolutional Neural Network Approach to Classify Skin Lesions Using Reflectance Confocal Microscopy.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[4]
Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions.

PLoS One. 2019-6-24

[5]
Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering.

Int J Med Inform. 2019-1-18

[6]
Attention Residual Learning for Skin Lesion Classification.

IEEE Trans Med Imaging. 2019-1-21

[7]
Fusing fine-tuned deep features for skin lesion classification.

Comput Med Imaging Graph. 2018-11-3

[8]
Classification Of Skin Lesions Using An Ensemble Of Deep Neural Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2018-7

[9]
Skin Lesion Analysis By Multi-Target Deep Neural Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2018-7

[10]
Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review.

J Med Internet Res. 2018-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索