Almutairi Saleh Ateeq
Department of Computer Science and Informatics, Applied College, Taibah University, Madinah, 41461, Saudi Arabia.
Sci Rep. 2025 Sep 2;15(1):32301. doi: 10.1038/s41598-025-01319-1.
Skin cancer, particularly melanoma, remains one of the most life-threatening forms of cancer worldwide, with early detection being critical for improving patient outcomes. Traditional diagnostic methods, such as dermoscopy and histopathology, are often limited by subjectivity, interobserver variability, and resource constraints. To address these challenges, this study proposes a dual-stream deep learning framework that combines histopathological-inherited and vision-based feature extraction for accurate and efficient skin lesion diagnosis. The framework uses the U-Net architecture for precise lesion segmentation, followed by a dual-stream approach: the first stream employs Virchow2, a pretrained model, to extract high-level histopathological embeddings, whereas the second stream uses Nomic, a vision-based model, to capture spatial and contextual information. The extracted features are fused and integrated to create a comprehensive representation of the lesion, which is then classified via a multilayer perceptron (MLP). The proposed approach is evaluated on the HAM10000 dataset, achieving a mean accuracy of 96.25% and a mean F1 score of 93.79% across 10 trials. Ablation studies demonstrate the importance of both feature streams, with the removal of either stream resulting in significant performance degradation. Comparative analysis with existing studies highlights the superiority of the proposed framework, which outperforms traditional single-modality approaches. The results underscore the potential of the dual-stream framework to enhance skin cancer diagnosis, offering a robust, interpretable, and scalable solution for clinical applications.
皮肤癌,尤其是黑色素瘤,仍然是全球最具生命威胁的癌症形式之一,早期检测对于改善患者预后至关重要。传统的诊断方法,如皮肤镜检查和组织病理学检查,常常受到主观性、观察者间差异和资源限制的制约。为应对这些挑战,本研究提出了一种双流深度学习框架,该框架结合了组织病理学遗传特征和基于视觉的特征提取,以实现准确高效的皮肤病变诊断。该框架使用U-Net架构进行精确的病变分割,随后采用双流方法:第一流采用预训练模型Virchow2来提取高级组织病理学嵌入特征,而第二流使用基于视觉的模型Nomic来捕捉空间和上下文信息。提取的特征进行融合和整合,以创建病变的综合表示,然后通过多层感知器(MLP)进行分类。所提出的方法在HAM10000数据集上进行了评估,在10次试验中平均准确率达到96.25%,平均F1分数达到93.79%。消融研究证明了两个特征流的重要性,去除任何一个流都会导致性能显著下降。与现有研究的对比分析突出了所提出框架的优越性,该框架优于传统的单模态方法。结果强调了双流框架在增强皮肤癌诊断方面的潜力,为临床应用提供了一种强大、可解释且可扩展的解决方案。
Front Neurorobot. 2025-7-30
IEEE Trans Pattern Anal Mach Intell. 2024-12
Am J Clin Pathol. 2024-6-3
Digit Health. 2023-8-29
Dermatol Ther (Heidelb). 2022-12