文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于皮肤癌分类的双流深度学习框架,采用组织病理学遗传特征和基于视觉的特征提取方法。

A dual-stream deep learning framework for skin cancer classification using histopathological-inherited and vision-based feature extraction.

作者信息

Almutairi Saleh Ateeq

机构信息

Department of Computer Science and Informatics, Applied College, Taibah University, Madinah, 41461, Saudi Arabia.

出版信息

Sci Rep. 2025 Sep 2;15(1):32301. doi: 10.1038/s41598-025-01319-1.


DOI:10.1038/s41598-025-01319-1
PMID:40897750
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12405463/
Abstract

Skin cancer, particularly melanoma, remains one of the most life-threatening forms of cancer worldwide, with early detection being critical for improving patient outcomes. Traditional diagnostic methods, such as dermoscopy and histopathology, are often limited by subjectivity, interobserver variability, and resource constraints. To address these challenges, this study proposes a dual-stream deep learning framework that combines histopathological-inherited and vision-based feature extraction for accurate and efficient skin lesion diagnosis. The framework uses the U-Net architecture for precise lesion segmentation, followed by a dual-stream approach: the first stream employs Virchow2, a pretrained model, to extract high-level histopathological embeddings, whereas the second stream uses Nomic, a vision-based model, to capture spatial and contextual information. The extracted features are fused and integrated to create a comprehensive representation of the lesion, which is then classified via a multilayer perceptron (MLP). The proposed approach is evaluated on the HAM10000 dataset, achieving a mean accuracy of 96.25% and a mean F1 score of 93.79% across 10 trials. Ablation studies demonstrate the importance of both feature streams, with the removal of either stream resulting in significant performance degradation. Comparative analysis with existing studies highlights the superiority of the proposed framework, which outperforms traditional single-modality approaches. The results underscore the potential of the dual-stream framework to enhance skin cancer diagnosis, offering a robust, interpretable, and scalable solution for clinical applications.

摘要

皮肤癌,尤其是黑色素瘤,仍然是全球最具生命威胁的癌症形式之一,早期检测对于改善患者预后至关重要。传统的诊断方法,如皮肤镜检查和组织病理学检查,常常受到主观性、观察者间差异和资源限制的制约。为应对这些挑战,本研究提出了一种双流深度学习框架,该框架结合了组织病理学遗传特征和基于视觉的特征提取,以实现准确高效的皮肤病变诊断。该框架使用U-Net架构进行精确的病变分割,随后采用双流方法:第一流采用预训练模型Virchow2来提取高级组织病理学嵌入特征,而第二流使用基于视觉的模型Nomic来捕捉空间和上下文信息。提取的特征进行融合和整合,以创建病变的综合表示,然后通过多层感知器(MLP)进行分类。所提出的方法在HAM10000数据集上进行了评估,在10次试验中平均准确率达到96.25%,平均F1分数达到93.79%。消融研究证明了两个特征流的重要性,去除任何一个流都会导致性能显著下降。与现有研究的对比分析突出了所提出框架的优越性,该框架优于传统的单模态方法。结果强调了双流框架在增强皮肤癌诊断方面的潜力,为临床应用提供了一种强大、可解释且可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/b254b8dfc95e/41598_2025_1319_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/eaebbb427bd7/41598_2025_1319_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/695f15227451/41598_2025_1319_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/3242d68001c6/41598_2025_1319_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/3e177753ef62/41598_2025_1319_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/412392620833/41598_2025_1319_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/b254b8dfc95e/41598_2025_1319_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/eaebbb427bd7/41598_2025_1319_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/695f15227451/41598_2025_1319_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/3242d68001c6/41598_2025_1319_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/3e177753ef62/41598_2025_1319_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/412392620833/41598_2025_1319_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/12405463/b254b8dfc95e/41598_2025_1319_Fig5_HTML.jpg

相似文献

[1]
A dual-stream deep learning framework for skin cancer classification using histopathological-inherited and vision-based feature extraction.

Sci Rep. 2025-9-2

[2]
Multiclass skin lesion classification and localziation from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-7-1

[3]
A deep learning framework for automated early diagnosis and classification of skin cancer lesions in dermoscopy images.

Sci Rep. 2025-8-25

[4]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

[5]
Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.

Comput Biol Med. 2024-8

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
Automatic melanoma detection using an optimized five-stream convolutional neural network.

Sci Rep. 2025-7-1

[8]
A multi-stage multi-modal learning algorithm with adaptive multimodal fusion for improving multi-label skin lesion classification.

Artif Intell Med. 2025-4

[9]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[10]
Deep Learning for the Early Detection of Invasive Ductal Carcinoma in Histopathological Images: Convolutional Neural Network Approach With Transfer Learning.

JMIR Form Res. 2025-8-21

本文引用的文献

[1]
Medical Image Segmentation Review: The Success of U-Net.

IEEE Trans Pattern Anal Mach Intell. 2024-12

[2]
A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization.

Sci Rep. 2024-2-21

[3]
Artificial intelligence-based algorithms for the diagnosis of prostate cancer: A systematic review.

Am J Clin Pathol. 2024-6-3

[4]
A concentrated machine learning-based classification system for age-related macular degeneration (AMD) diagnosis using fundus images.

Sci Rep. 2024-1-29

[5]
Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management.

Int J Mol Sci. 2023-11-1

[6]
Digital pathology world tour.

Digit Health. 2023-8-29

[7]
Skin Cancer Pathobiology at a Glance: A Focus on Imaging Techniques and Their Potential for Improved Diagnosis and Surveillance in Clinical Cohorts.

Int J Mol Sci. 2023-1-5

[8]
Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends.

J Clin Med. 2022-11-18

[9]
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network.

Sci Rep. 2022-10-28

[10]
Artificial Intelligence in Dermatology: Challenges and Perspectives.

Dermatol Ther (Heidelb). 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索