Suppr超能文献

DePicT 黑素瘤深度学习分类模型:一种用于皮肤病变图像分类的深度卷积神经网络方法。

DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images.

机构信息

Department of Electrical Engineering and Computer Science, University of Siegen, Hölderlinstr. 3, Siegen, Germany.

出版信息

BMC Bioinformatics. 2020 Mar 11;21(Suppl 2):84. doi: 10.1186/s12859-020-3351-y.

Abstract

BACKGROUND

Melanoma results in the vast majority of skin cancer deaths during the last decades, even though this disease accounts for only one percent of all skin cancers' instances. The survival rates of melanoma from early to terminal stages is more than fifty percent. Therefore, having the right information at the right time by early detection with monitoring skin lesions to find potential problems is essential to surviving this type of cancer.

RESULTS

An approach to classify skin lesions using deep learning for early detection of melanoma in a case-based reasoning (CBR) system is proposed. This approach has been employed for retrieving new input images from the case base of the proposed system DePicT Melanoma Deep-CLASS to support users with more accurate recommendations relevant to their requested problem (e.g., image of affected area). The efficiency of our system has been verified by utilizing the ISIC Archive dataset in analysis of skin lesion classification as a benign and malignant melanoma. The kernel of DePicT Melanoma Deep-CLASS is built upon a convolutional neural network (CNN) composed of sixteen layers (excluding input and ouput layers), which can be recursively trained and learned. Our approach depicts an improved performance and accuracy in testing on the ISIC Archive dataset.

CONCLUSIONS

Our methodology derived from a deep CNN, generates case representations for our case base to use in the retrieval process. Integration of this approach to DePicT Melanoma CLASS, significantly improving the efficiency of its image classification and the quality of the recommendation part of the system. The proposed method has been tested and validated on 1796 dermoscopy images. Analyzed results indicate that it is efficient on malignancy detection.

摘要

背景

在过去几十年中,黑色素瘤导致了绝大多数皮肤癌死亡,尽管这种疾病仅占所有皮肤癌病例的百分之一。从早期到晚期,黑色素瘤的存活率超过百分之五十。因此,通过早期检测和监测皮肤病变来及时获得正确的信息,以发现潜在问题,对于这种癌症的生存至关重要。

结果

提出了一种基于案例推理(CBR)系统的使用深度学习进行皮肤病变早期检测的方法。该方法已被用于从所提出的 DePicT Melanoma Deep-CLASS 系统的案例库中检索新的输入图像,以支持用户获得与其请求问题相关的更准确的建议(例如,受影响区域的图像)。通过利用 ISIC 档案数据集分析皮肤病变分类作为良性和恶性黑色素瘤,验证了我们系统的效率。DePicT Melanoma Deep-CLASS 的核心是基于一个由十六层(不包括输入和输出层)组成的卷积神经网络(CNN),可以对其进行递归训练和学习。我们的方法在对 ISIC 档案数据集的测试中表现出了改进的性能和准确性。

结论

我们的方法源自深度卷积神经网络,为我们的案例库生成案例表示,以用于检索过程。将这种方法集成到 DePicT Melanoma CLASS 中,显著提高了其图像分类的效率和系统推荐部分的质量。该方法已在 1796 张皮肤镜图像上进行了测试和验证。分析结果表明,它在恶性肿瘤检测方面非常有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验