Suppr超能文献

基于分数的生成模型辅助信息补偿用于光声断层成像中的高质量有限视角重建

Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography.

作者信息

Guo Kangjun, Zheng Zhiyuan, Zhong Wenhua, Li Zilong, Wang Guijun, Li Jiahong, Cao Yubin, Wang Yiguang, Lin Jiabin, Liu Qiegen, Song Xianlin

机构信息

School of Information Engineering, Nanchang University, Nanchang 330031, China.

出版信息

Photoacoustics. 2024 May 18;38:100623. doi: 10.1016/j.pacs.2024.100623. eCollection 2024 Aug.

Abstract

Photoacoustic tomography (PAT) regularly operates in limited-view cases owing to data acquisition limitations. The results using traditional methods in limited-view PAT exhibit distortions and numerous artifacts. Here, a novel limited-view PAT reconstruction strategy that combines model-based iteration with score-based generative model was proposed. By incrementally adding noise to the training samples, prior knowledge can be learned from the complex probability distribution. The acquired prior is then utilized as constraint in model-based iteration. The information of missing views can be gradually compensated by cyclic iteration to achieve high-quality reconstruction. The performance of the proposed method was evaluated with the circular phantom and experimental data. Experimental results demonstrate the outstanding effectiveness of the proposed method in limited-view cases. Notably, the proposed method exhibits excellent performance in limited-view case of 70° compared with traditional method. It achieves a remarkable improvement of 203% in PSNR and 48% in SSIM for the circular phantom experimental data, and an enhancement of 81% in PSNR and 65% in SSIM for experimental data, respectively. The proposed method has capability of reconstructing PAT images in extremely limited-view cases, which will further expand the application in clinical scenarios.

摘要

由于数据采集的限制,光声断层扫描(PAT)经常在有限视角的情况下运行。在有限视角的PAT中,使用传统方法得到的结果会出现失真和大量伪影。在此,提出了一种将基于模型的迭代与基于分数的生成模型相结合的新型有限视角PAT重建策略。通过向训练样本中逐步添加噪声,可以从复杂的概率分布中学习先验知识。然后将获取的先验用作基于模型的迭代中的约束。通过循环迭代可以逐步补偿缺失视角的信息,以实现高质量重建。使用圆形体模和实验数据对所提方法的性能进行了评估。实验结果证明了所提方法在有限视角情况下的卓越有效性。值得注意的是,与传统方法相比,所提方法在70°有限视角情况下表现出优异的性能。对于圆形体模实验数据,其在峰值信噪比(PSNR)上实现了203%的显著提升,在结构相似性指数(SSIM)上提高了48%;对于实验数据,在PSNR上提高了81%,在SSIM上提高了65%。所提方法具有在极其有限视角情况下重建PAT图像的能力,这将进一步扩大其在临床场景中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36f1/11144813/40eac139d2fe/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验