You Yang, Lou Yujing, Shi Ruoxi, Liu Qi, Tai Yu-Wing, Ma Lizhuang, Wang Weiming, Lu Cewu
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9489-9502. doi: 10.1109/TPAMI.2021.3130590. Epub 2022 Nov 7.
Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Point-wise Rotation Invariant Network, focusing on rotation invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive Sampling to deal with distorted point distributions in spherical space. Spherical Voxel Convolution and Point Re-sampling are proposed to extract rotation invariant features for each point. In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds. Both PRIN and SPRIN can be applied to tasks ranging from object classification, part segmentation, to 3D feature matching and label alignment. Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation. We also provide thorough theoretical proof and analysis for point-wise rotation invariance achieved by our methods. The code to reproduce our results will be made publicly available.
在实际应用中,没有姿态先验的点云分析极具挑战性,因为点云的方向往往是未知的。在本文中,我们提出了一种全新的点集学习框架PRIN,即逐点旋转不变网络,专注于点云分析中的旋转不变特征提取。我们通过密度感知自适应采样构建球面信号,以处理球面空间中扭曲的点分布。提出了球面体素卷积和点重采样,为每个点提取旋转不变特征。此外,我们将PRIN扩展为一个名为SPLIN的稀疏版本,它直接对稀疏点云进行操作。PRIN和SPLIN都可以应用于从物体分类、部件分割到三维特征匹配和标签对齐等任务。结果表明,在具有随机旋转点云的数据集上,SPLIN在没有任何数据增强的情况下,表现优于现有方法。我们还为我们的方法实现的逐点旋转不变性提供了全面的理论证明和分析。用于重现我们结果的代码将公开提供。