Suppr超能文献

PRIN/SPRIN:关于提取逐点旋转不变特征

PRIN/SPRIN: On Extracting Point-Wise Rotation Invariant Features.

作者信息

You Yang, Lou Yujing, Shi Ruoxi, Liu Qi, Tai Yu-Wing, Ma Lizhuang, Wang Weiming, Lu Cewu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9489-9502. doi: 10.1109/TPAMI.2021.3130590. Epub 2022 Nov 7.

Abstract

Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Point-wise Rotation Invariant Network, focusing on rotation invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive Sampling to deal with distorted point distributions in spherical space. Spherical Voxel Convolution and Point Re-sampling are proposed to extract rotation invariant features for each point. In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds. Both PRIN and SPRIN can be applied to tasks ranging from object classification, part segmentation, to 3D feature matching and label alignment. Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation. We also provide thorough theoretical proof and analysis for point-wise rotation invariance achieved by our methods. The code to reproduce our results will be made publicly available.

摘要

在实际应用中,没有姿态先验的点云分析极具挑战性,因为点云的方向往往是未知的。在本文中,我们提出了一种全新的点集学习框架PRIN,即逐点旋转不变网络,专注于点云分析中的旋转不变特征提取。我们通过密度感知自适应采样构建球面信号,以处理球面空间中扭曲的点分布。提出了球面体素卷积和点重采样,为每个点提取旋转不变特征。此外,我们将PRIN扩展为一个名为SPLIN的稀疏版本,它直接对稀疏点云进行操作。PRIN和SPLIN都可以应用于从物体分类、部件分割到三维特征匹配和标签对齐等任务。结果表明,在具有随机旋转点云的数据集上,SPLIN在没有任何数据增强的情况下,表现优于现有方法。我们还为我们的方法实现的逐点旋转不变性提供了全面的理论证明和分析。用于重现我们结果的代码将公开提供。

相似文献

1
PRIN/SPRIN: On Extracting Point-Wise Rotation Invariant Features.PRIN/SPRIN:关于提取逐点旋转不变特征
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9489-9502. doi: 10.1109/TPAMI.2021.3130590. Epub 2022 Nov 7.
2
A Rotation-Invariant Framework for Deep Point Cloud Analysis.一种用于深度点云分析的旋转不变框架。
IEEE Trans Vis Comput Graph. 2022 Dec;28(12):4503-4514. doi: 10.1109/TVCG.2021.3092570. Epub 2022 Oct 26.
5
Rotation-Invariant Point Cloud Representation for 3-D Model Recognition.用于三维模型识别的旋转不变点云表示。
IEEE Trans Cybern. 2022 Oct;52(10):10948-10956. doi: 10.1109/TCYB.2022.3157593. Epub 2022 Sep 19.
7
Learning of 3D Graph Convolution Networks for Point Cloud Analysis.用于点云分析的三维图卷积网络研究
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4212-4224. doi: 10.1109/TPAMI.2021.3059758. Epub 2022 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验