IEEE Trans Cybern. 2022 Oct;52(10):10948-10956. doi: 10.1109/TCYB.2022.3157593. Epub 2022 Sep 19.
Three-dimensional (3-D) data have many applications in the field of computer vision and a point cloud is one of the most popular modalities. Therefore, how to establish a good representation for a point cloud is a core issue in computer vision, especially for 3-D object recognition tasks. Existing approaches mainly focus on the invariance of representation under the group of permutations. However, for point cloud data, it should also be rotation invariant. To address such invariance, in this article, we introduce a relation of equivalence under the action of rotation group, through which the representation of point cloud is located in a homogeneous space. That is, two point clouds are regarded as equivalent when they are only different from a rotation. Our network is flexibly incorporated into existing frameworks for point clouds, which guarantees the proposed approach to be rotation invariant. Besides, a sufficient analysis on how to parameterize the group SO(3) into a convolutional network, which captures a relation with all rotations in 3-D Euclidean space [Formula: see text]. We select the optimal rotation as the best representation of point cloud and propose a solution for minimizing the problem on the rotation group SO(3) by using its geometric structure. To validate the rotation invariance, we combine it with two existing deep models and evaluate them on ModelNet40 dataset and its subset ModelNet10. Experimental results indicate that the proposed strategy improves the performance of those existing deep models when the data involve arbitrary rotations.
三维 (3-D) 数据在计算机视觉领域有许多应用,而点云是最流行的模态之一。因此,如何为点云建立良好的表示是计算机视觉中的一个核心问题,特别是对于 3-D 物体识别任务。现有的方法主要集中在表示在置换群下的不变性上。然而,对于点云数据,它也应该是旋转不变的。为了解决这种不变性,在本文中,我们引入了旋转群作用下的等价关系,通过该关系,点云的表示位于齐次空间中。也就是说,当两个点云只是来自于旋转的不同时,它们被视为等价的。我们的网络灵活地融入现有点云的框架中,这保证了所提出的方法是旋转不变的。此外,我们充分分析了如何将群 SO(3) 参数化为卷积网络,以捕获三维欧几里得空间中的所有旋转关系 [公式:见文本]。我们选择最佳旋转作为点云的最佳表示,并提出了一种通过使用其几何结构来解决 SO(3) 旋转群上的问题的解决方案。为了验证旋转不变性,我们将其与两个现有的深度学习模型相结合,并在 ModelNet40 数据集及其子集 ModelNet10 上对它们进行评估。实验结果表明,当数据涉及任意旋转时,所提出的策略可以提高现有深度学习模型的性能。