The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
Cell Calcium. 2022 Jan;101:102501. doi: 10.1016/j.ceca.2021.102501. Epub 2021 Nov 19.
Mutations in either of the polycystic kidney disease genes, PKD1 or PKD2, engender the growth of cysts, altering renal function. Cystic growth is supported by major changes in cellular metabolism, some of which involve the mitochondrion, a major storage site for Ca and a key organelle in cellular Ca signaling. The goal here was to understand the role of components of the mitochondrial Ca uptake complex in PC1-mutant cells in autosomal dominant polycystic kidney disease (ADPKD). We found that the mitochondrial Ca uniporter (MCU) and voltage-dependent anion channels 1& 3 (VDAC) were down-regulated in different mouse and cell models of ADPKD along with the Ca-dependent enzyme, pyruvate dehydrogenase phosphatase (PDHX). The release of Ca from the endoplasmic reticulum, and Ca uptake by the mitochondria were upregulated in PC1(polycystin)-null cells. We also observed an enhanced staining with MitoTracker Red CMXRos in PC1-null cultured cells than in PC1-containing cells and a substantially higher increase in response to ER Ca release. Increased colocalization of the Ca sensitive dye, rhodamine2, with MitoTracker Green suggested an increase Ca entry into the mitochondria in PC1 null cells subsequent to Ca release from the ER or from Ca entry from the extracellular solution. These data clearly demonstrate abnormal release of Ca by the ER and corresponding alterations in Ca uptake by the mitochondria in PC1null cells. Importantly, inhibiting mitochondrial Ca uptake with the specific inhibitor Ru360 inhibited cyst growth and altered both apoptosis and cell proliferation. We further show that the decrease in mitochondrial proteins and abnormally high Ca signaling can be reversed by application of the cystic fibrosis (CFTR) corrector, VX-809. We conclude that enhanced Ca signaling and alterations in proteins association with the mitochondrial Ca uptake complex are associated with malfunction of PC1. Finally, our results identify novel therapeutic targets for treating ADPKD.
多囊肾病基因 PKD1 或 PKD2 的突变会导致囊肿生长,从而改变肾功能。囊肿的生长得到了细胞代谢的重大变化的支持,其中一些变化涉及线粒体,线粒体是 Ca 的主要储存场所,也是细胞 Ca 信号传导的关键细胞器。这里的目标是了解线粒体 Ca 摄取复合物的成分在常染色体显性多囊肾病(ADPKD)中的 PC1 突变细胞中的作用。我们发现,在不同的 ADPKD 小鼠和细胞模型中,线粒体 Ca 单向转运蛋白(MCU)和电压依赖性阴离子通道 1&3(VDAC)以及 Ca 依赖性酶丙酮酸脱氢酶磷酸酶(PDHX)下调。内质网 Ca 释放和线粒体 Ca 摄取增加 PC1(polycystin)-null 细胞。我们还观察到在用 MitoTracker Red CMXRos 对 PC1-null 培养细胞进行染色时,比在用 PC1 表达细胞染色时要强,并且对 ER Ca 释放的响应也大大增加。Ca 敏感染料 rhodamine2 与 MitoTracker Green 的共定位增加表明,在 PC1 缺失细胞中,Ca 从 ER 释放或从细胞外溶液进入 Ca 后,Ca 进入线粒体增加。这些数据清楚地表明,PC1null 细胞中 ER 异常释放 Ca 以及相应的 Ca 摄取改变。重要的是,用特异性抑制剂 Ru360 抑制线粒体 Ca 摄取可抑制囊肿生长并改变细胞凋亡和增殖。我们进一步表明,用囊性纤维化(CFTR)校正剂 VX-809 可逆转线粒体蛋白减少和异常高的 Ca 信号。我们得出结论,增强的 Ca 信号和与线粒体 Ca 摄取复合物相关的蛋白改变与 PC1 的功能障碍有关。最后,我们的结果确定了治疗 ADPKD 的新治疗靶点。