Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
Cells. 2023 Jun 27;12(13):1732. doi: 10.3390/cells12131732.
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca concentrations ([Ca]) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore, targeting the endothelial ion channel machinery could represent a promising strategy to rescue endothelial NO signalling in traumatic brain injury and neurodegenerative disorders. Allyl isothiocyanate (AITC), a major active constituent of cruciferous vegetables, was found to increase CBF in non-human preclinical models, but it is still unknown whether it stimulates NO release in human brain capillary endothelial cells. In the present investigation, we showed that AITC evoked a Ca-dependent NO release in the human cerebrovascular endothelial cell line, hCMEC/D3. The Ca response to AITC was shaped by both intra- and extracellular Ca sources, although it was insensitive to the pharmacological blockade of transient receptor potential ankyrin 1, which is regarded to be among the main molecular targets of AITC. In accord, AITC failed to induce transmembrane currents or to elicit membrane hyperpolarization, although NS309, a selective opener of the small- and intermediate-conductance Ca-activated K channels, induced a significant membrane hyperpolarization. The AITC-evoked Ca signal was triggered by the production of cytosolic, but not mitochondrial, reactive oxygen species (ROS), and was supported by store-operated Ca entry (SOCE). Conversely, the Ca response to AITC did not require Ca mobilization from the endoplasmic reticulum, lysosomes or mitochondria. However, pharmacological manipulation revealed that AITC-dependent ROS generation inhibited plasma membrane Ca-ATPase (PMCA) activity, thereby attenuating Ca removal across the plasma membrane and resulting in a sustained increase in [Ca]. In accord, the AITC-evoked NO release was driven by ROS generation and required ROS-dependent inhibition of PMCA activity. These data suggest that AITC could be exploited to restore NO signalling and restore CBF in brain disorders that feature neurovascular dysfunction.
一氧化氮(NO)是调节人类大脑脑血流(CBF)的重要介质,无论是在基础条件下还是在体感刺激下。细胞内 Ca 浓度的增加([Ca])刺激内皮型一氧化氮合酶在人脑血管内皮细胞中产生 NO。因此,靶向内皮离子通道机制可能是一种有前途的策略,可以挽救创伤性脑损伤和神经退行性疾病中的内皮一氧化氮信号。丙烯基异硫氰酸酯(AITC)是十字花科蔬菜的主要活性成分,在非人类临床前模型中被发现能增加 CBF,但尚不清楚它是否能刺激人脑血管内皮细胞释放 NO。在本研究中,我们表明 AITC 在人脑血管内皮细胞系 hCMEC/D3 中诱发了 Ca 依赖性的 NO 释放。AITC 对 Ca 的反应受到细胞内和细胞外 Ca 源的影响,尽管它对瞬时受体电位锚蛋白 1 的药理学阻断不敏感,而瞬时受体电位锚蛋白 1 被认为是 AITC 的主要分子靶点之一。相应地,AITC 不能诱导跨膜电流或引起膜超极化,尽管 NS309,一种小和中等电导 Ca 激活的 K 通道的选择性开放剂,诱导了显著的膜超极化。AITC 诱发的 Ca 信号是由细胞质而不是线粒体产生的活性氧物质(ROS)触发的,并得到了储存操作的 Ca 内流(SOCE)的支持。相反,AITC 对 Ca 的反应不需要从内质网、溶酶体或线粒体中动员 Ca。然而,药理学操作表明,AITC 依赖性 ROS 生成抑制了质膜 Ca-ATP 酶(PMCA)的活性,从而减轻了质膜上的 Ca 去除,并导致 [Ca]的持续增加。相应地,AITC 诱发的 NO 释放是由 ROS 生成驱动的,并需要 ROS 依赖性抑制 PMCA 活性。这些数据表明,AITC 可用于恢复在具有神经血管功能障碍的脑部疾病中特征性的 NO 信号和恢复 CBF。