Suppr超能文献

利用文本挖掘技术从南非豪登省半结构化叙述性实验室报告中提取前列腺癌预测信息(格里森评分)。

Using text mining techniques to extract prostate cancer predictive information (Gleason score) from semi-structured narrative laboratory reports in the Gauteng province, South Africa.

机构信息

Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service (NHLS), 7 York Road, Parktown, Johannesburg, South Africa.

School of Public Health, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa.

出版信息

BMC Med Inform Decis Mak. 2021 Nov 25;21(1):330. doi: 10.1186/s12911-021-01697-2.

Abstract

BACKGROUND

Prostate cancer (PCa) is the leading male neoplasm in South Africa with an age-standardised incidence rate of 68.0 per 100,000 population in 2018. The Gleason score (GS) is the strongest predictive factor for PCa treatment and is embedded within semi-structured prostate biopsy narrative reports. The manual extraction of the GS is labour-intensive. The objective of our study was to explore the use of text mining techniques to automate the extraction of the GS from irregularly reported text-intensive patient reports.

METHODS

We used the associated Systematized Nomenclature of Medicine clinical terms morphology and topography codes to identify prostate biopsies with a PCa diagnosis for men aged > 30 years between 2006 and 2016 in the Gauteng Province, South Africa. We developed a text mining algorithm to extract the GS from 1000 biopsy reports with a PCa diagnosis from the National Health Laboratory Service database and validated the algorithm using 1000 biopsies from the private sector. The logical steps for the algorithm were data acquisition, pre-processing, feature extraction, feature value representation, feature selection, information extraction, classification, and discovered knowledge. We evaluated the algorithm using precision, recall and F-score. The GS was manually coded by two experts for both datasets. The top five GS were reported, with the remaining scores categorised as "Other" for both datasets. The percentage of biopsies with a high-risk GS (≥ 8) was also reported.

RESULTS

The first output reported an F-score of 0.99 that improved to 1.00 after the algorithm was amended (the GS reported in clinical history was ignored). For the validation dataset, an F-score of 0.99 was reported. The most commonly reported GS were 5 + 4 = 9 (17.6%), 3 + 3 = 6 (17.5%), 4 + 3 = 7 (16.4%), 3 + 4 = 7 (14.7%) and 4 + 4 = 8 (14.2%). For the validation dataset, the most commonly reported GS were: (i) 3 + 3 = 6 (37.7%), (ii) 3 + 4 = 7 (19.4%), (iii) 4 + 3 = 7 (14.9%), (iv) 4 + 4 = 8 (10.0%) and (v) 4 + 5 = 9 (7.4%). A high-risk GS was reported for 31.8% compared to 17.4% for the validation dataset.

CONCLUSIONS

We demonstrated reliable extraction of information about GS from narrative text-based patient reports using an in-house developed text mining algorithm. A secondary outcome was that late presentation could be assessed.

摘要

背景

前列腺癌(PCa)是南非男性中最主要的肿瘤,2018 年其年龄标准化发病率为每 10 万人 68.0 例。Gleason 评分(GS)是 PCa 治疗的最强预测因素,嵌入在半结构化前列腺活检叙述报告中。GS 的手动提取是劳动密集型的。我们研究的目的是探索使用文本挖掘技术从不规则报告的文本密集型患者报告中自动提取 GS。

方法

我们使用相关的系统命名法医学临床术语形态和拓扑代码来识别 2006 年至 2016 年间南非豪登省年龄大于 30 岁的男性的 PCa 诊断相关的前列腺活检。我们开发了一种文本挖掘算法,从国家卫生实验室服务数据库中 1000 份 PCa 诊断活检报告中提取 GS,并使用私营部门的 1000 份活检报告对算法进行验证。算法的逻辑步骤包括数据获取、预处理、特征提取、特征值表示、特征选择、信息提取、分类和发现知识。我们使用精度、召回率和 F 分数来评估算法。GS 由两位专家手动对两个数据集进行编码。报告了前五个 GS,其余分数被归类为“其他”,适用于两个数据集。还报告了高风险 GS(≥8)的活检比例。

结果

第一个输出报告的 F 分数为 0.99,在算法修改后提高到 1.00(忽略了临床病史中报告的 GS)。对于验证数据集,报告的 F 分数为 0.99。最常见报告的 GS 是 5+4=9(17.6%)、3+3=6(17.5%)、4+3=7(16.4%)、3+4=7(14.7%)和 4+4=8(14.2%)。对于验证数据集,最常见报告的 GS 是:(i)3+3=6(37.7%)、(ii)3+4=7(19.4%)、(iii)4+3=7(14.9%)、(iv)4+4=8(10.0%)和(v)4+5=9(7.4%)。报告的高危 GS 为 31.8%,而验证数据集为 17.4%。

结论

我们使用内部开发的文本挖掘算法,从基于文本的患者报告中可靠地提取了关于 GS 的信息。次要结果是可以评估晚期表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/030d/8614040/5714ee1122cf/12911_2021_1697_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验