Chen Wenyao, Cao Junbo, Yang Jia, Cao Yueqiang, Zhang Hao, Jiang Zheng, Zhang Jing, Qian Gang, Zhou Xinggui, Chen De, Yuan Weikang, Duan Xuezhi
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
Nat Commun. 2021 Nov 25;12(1):6888. doi: 10.1038/s41467-021-27238-z.
A molecular-level understanding of how the electronic structure of metal center tunes the catalytic behaviors remains a grand challenge in heterogeneous catalysis. Herein, we report an unconventional kinetics strategy for bridging the microscopic metal electronic structure and the macroscopic steady-state rate for CO oxidation over Pt catalysts. X-ray absorption and photoelectron spectroscopy as well as electron paramagnetic resonance investigations unambiguously reveal the tunable Pt electronic structures with well-designed carbon support surface chemistry. Diminishing the electron density of Pt consolidates the CO-assisted O dissociation pathway via the O*-O-C*-O intermediate directly observed by isotopic labeling studies and rationalized by density-functional theory calculations. A combined steady-state isotopic transient kinetic and in situ electronic analyses identifies Pt charge as the kinetics indicators by being closely related to the frequency factor, site coverage, and activation energy. Further incorporation of catalyst structural parameters yields a novel model for quantifying the electronic effects and predicting the catalytic performance. These could serve as a benchmark of catalyst design by a comprehensive kinetics study at the molecular level.
在多相催化中,从分子层面理解金属中心的电子结构如何调节催化行为仍然是一个巨大的挑战。在此,我们报告了一种非常规的动力学策略,用于在微观金属电子结构和宏观稳态速率之间建立联系,以研究Pt催化剂上的CO氧化反应。X射线吸收光谱、光电子能谱以及电子顺磁共振研究明确揭示了通过精心设计碳载体表面化学实现的可调节Pt电子结构。降低Pt的电子密度通过同位素标记研究直接观察到的O*-O-C*-O中间体巩固了CO辅助的O解离途径,并通过密度泛函理论计算进行了合理化解释。稳态同位素瞬变动力学和原位电子分析相结合,确定Pt电荷为动力学指标,因为它与频率因子、位点覆盖率和活化能密切相关。进一步纳入催化剂结构参数,得到了一个用于量化电子效应和预测催化性能的新模型。这些可以作为通过分子水平的综合动力学研究进行催化剂设计的基准。