Suppr超能文献

通过热力学和微观动力学联合建模预测反应条件下催化剂材料的形态变化

Prediction of morphological changes of catalyst materials under reaction conditions by combined thermodynamics and microkinetic modelling.

作者信息

Cheula Raffaele, Soon Aloysius, Maestri Matteo

机构信息

Laboratory of Catalysis and Catalytic Processes , Dipartimento di Energia , Politecnico di Milano , via La Masa 34 , 20156 Milano , Italy . Email:

Department of Materials Science and Engineering , Yonsei University , Seoul , Korea.

出版信息

Catal Sci Technol. 2018 Jul 21;8(14):3493-3503. doi: 10.1039/c8cy00583d. Epub 2018 Jun 1.

Abstract

In this article, we couple microkinetic modelling, thermodynamics and Wulff-Kaishew construction to describe the structural variation of catalyst materials as a function of the chemical potential in the reactor. We focus specifically on experiments of catalytic partial oxidation (CPO) of methane on Rh/α-AlO. We employ a detailed structureless microkinetic model to calculate the profiles of the gaseous species molar fractions along the reactor coordinate and to select the most abundant reaction intermediates (MARIs) populating the catalyst surfaces in different zones of the reactor. Then, we calculate the most stable bulk and surface structures of the catalyst under different conditions of the reaction environment with density functional theory (DFT) calculations and thermodynamics, considering the presence of the MARIs on the catalyst surface in thermodynamic equilibrium with the partial pressures of their reservoirs in the gas phase surrounding the catalyst. Finally, we exploit the Wulff-Kaishew construction method to estimate the three-dimensional shape of the catalyst nanoparticles and the distribution of the active sites along the reactor coordinate. We find that the catalyst drastically modifies its morphology during CPO reaction by undergoing phase transition, in agreement with spectroscopy studies reported in the literature. The framework is also successfully applied for the analysis and interpretation of chemisorption experiments for catalyst characterization. These results demonstrate the crucial importance of rigorously accounting for the structural effect in microkinetic modeling simulations and pave the way towards the development of structure-dependent microkinetic analysis of catalytic processes.

摘要

在本文中,我们将微观动力学建模、热力学和伍尔夫-凯谢夫构造相结合,以描述催化剂材料的结构变化与反应器中化学势的函数关系。我们特别关注甲烷在Rh/α-Al₂O₃上的催化部分氧化(CPO)实验。我们采用详细的无结构微观动力学模型来计算沿反应器坐标的气态物种摩尔分数分布,并选择在反应器不同区域中占据催化剂表面的最丰富反应中间体(MARIs)。然后,我们利用密度泛函理论(DFT)计算和热力学,考虑到MARIs在催化剂表面与围绕催化剂的气相中其储库的分压处于热力学平衡状态,来计算在不同反应环境条件下催化剂最稳定的体相和表面结构。最后,我们利用伍尔夫-凯谢夫构造方法来估计催化剂纳米颗粒的三维形状以及活性位点沿反应器坐标的分布。我们发现,在CPO反应过程中,催化剂通过发生相变而剧烈改变其形态,这与文献中报道的光谱学研究结果一致。该框架还成功应用于催化剂表征的化学吸附实验的分析和解释。这些结果证明了在微观动力学建模模拟中严格考虑结构效应的至关重要性,并为催化过程的结构依赖性微观动力学分析的发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd7/6333263/86a53c5e14ca/c8cy00583d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验