Rutgers School of Business-Camden, Camden, NJ, 08102, USA.
SUNY at Geneseo, Geneseo, NY, 14454, USA.
Sci Rep. 2021 Nov 25;11(1):22914. doi: 10.1038/s41598-021-02367-z.
The COVID-19 pandemic has spurred controversies related to whether countries manipulate reported data for political gains. We study the association between accuracy of reported COVID-19 data and developmental indicators. We use the Newcomb-Benford law (NBL) to gauge data accuracy. We run an OLS regression of an index constructed from developmental indicators (democracy level, gross domestic product per capita, healthcare expenditures, and universal healthcare coverage) on goodness-of-fit measures to the NBL. We find that countries with higher values of the developmental index are less likely to deviate from the Newcomb-Benford law. The relationship holds for the cumulative number of reported deaths and total cases but is more pronounced for the death toll. The findings are robust for second-digit tests and for a sub-sample of countries with regional data. The NBL provides a first screening for potential data manipulation during pandemics. Our study indicates that data from autocratic regimes and less developed countries should be treated with more caution. The paper further highlights the importance of independent surveillance data verification projects.
新冠疫情大流行引发了关于各国是否为了政治利益操纵报告数据的争议。我们研究了报告的新冠数据准确性与发展指标之间的关联。我们使用纽康姆-本福德定律(Newcomb-Benford law,NBL)来衡量数据准确性。我们构建了一个由发展指标(民主水平、人均国内生产总值、医疗支出和全民医疗保健覆盖范围)组成的指数,然后对其与 NBL 的拟合优度进行 OLS 回归。我们发现,发展指数较高的国家更不可能偏离纽康姆-本福德定律。这一关系在报告的死亡人数和总病例数上都成立,但在死亡人数上更为明显。第二个数字测试和具有区域数据的国家子样本的结果都是稳健的。NBL 为大流行期间潜在的数据操纵提供了初步筛选。我们的研究表明,来自专制政权和欠发达国家的数据应该更加谨慎地对待。该论文进一步强调了独立监测数据验证项目的重要性。