Lee D B, Yoon H G, Park S M, Choi J W, Kwon H Y, Won C
Department of Physics, Kyung Hee University, Seoul, 02447, South Korea.
Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
Sci Rep. 2021 Nov 25;11(1):22937. doi: 10.1038/s41598-021-02374-0.
The properties of complicated magnetic domain structures induced by various spin-spin interactions in magnetic systems have been extensively investigated in recent years. To understand the statistical and dynamic properties of complex magnetic structures, it is crucial to obtain information on the effective field distribution over the structure, which is not directly provided by magnetization. In this study, we use a deep learning technique to estimate the effective fields of spin configurations. We construct a deep neural network and train it with spin configuration datasets generated by Monte Carlo simulation. We show that the trained network can successfully estimate the magnetic effective field even though we do not offer explicit Hamiltonian parameter values. The estimated effective field information is highly applicable; it is utilized to reduce noise, correct defects in the magnetization data, generate spin configurations, estimate external field responses, and interpret experimental images.
近年来,人们广泛研究了磁系统中各种自旋 - 自旋相互作用所诱导的复杂磁畴结构的特性。为了理解复杂磁结构的统计和动态特性,获取结构上有效场分布的信息至关重要,而磁化强度并不能直接提供该信息。在本研究中,我们使用深度学习技术来估计自旋构型的有效场。我们构建了一个深度神经网络,并用蒙特卡罗模拟生成的自旋构型数据集对其进行训练。我们表明,即使不提供明确的哈密顿量参数值,训练后的网络也能成功估计磁有效场。估计出的有效场信息具有很高的适用性;它可用于降低噪声、校正磁化数据中的缺陷、生成自旋构型、估计外部场响应以及解释实验图像。