Suppr超能文献

基于 MRI 的放射组学模型可提高视网膜母细胞瘤术后视神经侵犯的预测性能。

MRI-based radiomics model can improve the predictive performance of postlaminar optic nerve invasion in retinoblastoma.

机构信息

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1 of Dongjiaominxiang, Dongcheng District, Beijing, China.

Clinical Center for Eye Tumors, Capital Medical University, Beijing, China.

出版信息

Br J Radiol. 2022 Feb 1;95(1130):20211027. doi: 10.1259/bjr.20211027. Epub 2021 Dec 3.

Abstract

OBJECTIVES

To develop an MRI-based radiomics model to predict postlaminar optic nerve invasion (PLONI) in retinoblastoma (RB) and compare its predictive performance with subjective radiologists' assessment.

METHODS

We retrospectively enrolled 124 patients with pathologically proven RB (90 in training set and 34 in validation set) who had MRI scans before surgery. A radiomics model for predicting PLONI was developed by extracting quantitative imaging features from axial T2W images and contrast-enhanced T1W images in the training set. The Kruskal-Wallis test, least absolute shrinkage and selection operator regression, and recursive feature elimination were used for feature selection, where upon a radiomics model was built with a logistic regression (LR) classifier. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and the accuracy were assessed to evaluate the predictive performance in the training and validation set. The performance of the radiomics model was compared to radiologists' assessment by DeLong test.

RESULTS

The AUC of the radiomics model for the prediction of PLONI was 0.928 in the training set and 0.841 in the validation set. Radiomics model produced better sensitivity than radiologists' assessment (81.1% vs  43.2% in training set, 82.4vs 52.9% in validation set). In all 124 patients, the AUC of the radiomics model was 0.897, while that of radiologists' assessment was 0.674 ( < 0.001, DeLong test).

CONCLUSION

MRI-based radiomics model to predict PLONI in RB patients was shown to be superior to visual assessment with improved sensitivity and AUC, and may serve as a potential tool to guide personalized treatment.

摘要

目的

开发一种基于 MRI 的放射组学模型,以预测视网膜母细胞瘤(RB)的视后神经侵犯(PLONI),并比较其预测性能与主观放射科医生评估的差异。

方法

我们回顾性纳入了 124 例经病理证实的 RB 患者(训练集 90 例,验证集 34 例),这些患者在手术前均进行了 MRI 扫描。在训练集中,我们从轴向 T2W 图像和增强 T1W 图像中提取定量成像特征,建立了预测 PLONI 的放射组学模型。采用 Kruskal-Wallis 检验、最小绝对收缩和选择算子回归以及递归特征消除进行特征选择,然后使用逻辑回归(LR)分类器构建放射组学模型。通过接受者操作特征(ROC)曲线下的面积(AUC)和准确性评估来评估训练集和验证集的预测性能。通过 DeLong 检验比较放射组学模型与放射科医生评估的性能。

结果

在训练集和验证集中,预测 PLONI 的放射组学模型的 AUC 分别为 0.928 和 0.841。放射组学模型的敏感性优于放射科医生的评估(训练集分别为 81.1%和 43.2%,验证集分别为 82.4%和 52.9%)。在所有 124 例患者中,放射组学模型的 AUC 为 0.897,而放射科医生评估的 AUC 为 0.674(<0.001,DeLong 检验)。

结论

基于 MRI 的放射组学模型预测 RB 患者的 PLONI 优于视觉评估,具有更高的敏感性和 AUC,可能成为指导个体化治疗的潜在工具。

相似文献

引用本文的文献

4
Radiomics in ophthalmology: a systematic review.眼科中的放射组学:一项系统综述。
Eur Radiol. 2025 Jan;35(1):542-557. doi: 10.1007/s00330-024-10911-4. Epub 2024 Jul 21.
5
[Imaging of retinoblastoma : Current state-of-the-art and future prospects].[视网膜母细胞瘤的影像学:当前技术水平与未来展望]
Radiologie (Heidelb). 2022 Dec;62(12):1067-1074. doi: 10.1007/s00117-022-01052-0. Epub 2022 Aug 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验