IEEE Trans Biomed Eng. 2022 Jun;69(6):1931-1942. doi: 10.1109/TBME.2021.3130917. Epub 2022 May 19.
Neuroscience studies have demonstrated the phase-locked characteristics of some early event-related potential (ERP) components evoked by stimuli. In this study, we propose a phase preservation neural network (PPNN) to learn phase information to improve the Electroencephalography (EEG) classification in a rapid serial visual presentation (RSVP) task. The PPNN consists of three major modules that can produce spatial and temporal representations with the high discriminative ability of the EEG features for classification. We first adopt a stack of dilated temporal convolution layers to extract temporal dynamics while avoiding the loss of phase information. Considering the intrinsic channel dependence of the EEG data, a spatial convolution layer is then applied to obtain the spatial-temporal representation of the input EEG signal. Finally, a fully connected layer is adopted to extract higher-level features for the final classification. The experiments are conducted on two public and one collected EEG datasets from the RSVP task, in which we evaluated the performance and explored the capability of phase preservation of our PPNN model and visualized the extracted features. The experimental results indicate the superiority of the proposed PPNN when compared with previous methods, suggesting the PPNN is a robust model for EEG classification in RSVP task.
神经科学研究已经证明了一些由刺激引发的早期事件相关电位(ERP)成分的锁相特征。在这项研究中,我们提出了一种相位保持神经网络(PPNN),以学习相位信息,从而提高在快速序列视觉呈现(RSVP)任务中的脑电图(EEG)分类。PPNN 由三个主要模块组成,能够产生具有 EEG 特征高分类能力的时空表示。我们首先采用堆叠的扩张时间卷积层来提取时间动态,同时避免相位信息的丢失。考虑到 EEG 数据的固有通道相关性,然后应用空间卷积层来获取输入 EEG 信号的时空表示。最后,采用全连接层提取更高层次的特征用于最终分类。实验在两个来自 RSVP 任务的公共 EEG 数据集和一个收集的 EEG 数据集上进行,我们评估了性能并探索了我们的 PPNN 模型的相位保持能力,并可视化了提取的特征。实验结果表明,与以前的方法相比,所提出的 PPNN 具有优越性,表明 PPNN 是 RSVP 任务中 EEG 分类的稳健模型。