Suppr超能文献

红树林微生物组揭示了硫代谢在热带沿海水域中的重要性。

Mangrove microbiome reveals importance of sulfur metabolism in tropical coastal waters.

机构信息

Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

出版信息

Sci Total Environ. 2022 Mar 20;813:151889. doi: 10.1016/j.scitotenv.2021.151889. Epub 2021 Nov 23.

Abstract

Mangroves under macro-tidal regimes are global carbon sequestration hotspots but the microbial drivers of biogeochemical cycles remain poorly understood. Here, we investigate the drivers of mangrove microbial community composition across a porewater-creek-estuary-ocean continuum. Observations were performed on the Amazon region in one of the largest mangrove systems worldwide with effective sequestration of organic carbon buried in soils and dissolved carbon via outwelling to the ocean. The potential export to the adjacent oceanic region ranged from 57 to 380 kg of dissolved and particulate organic carbon per second (up to 33 thousand tons C per day). Macro tides modulated microbial communities and their metabolic processes, e.g., anoxygenic phototrophy, sulfur, and nitrogen cycling. Respiration, sulfur metabolism and dissolved organic carbon (DOC) levels were linked to functional groups and microbial cell counts. Total microbial counts decreased and cyanobacteria counts peaked in the spring tide. The microbial groups driving carbon, nitrogen, sulfur and methane cycles were consistent across all spatial scales. Taxonomic groups engaged in sulfur cycling (Allochromatium, Desulfovibrio, and Thibacillus) within mangroves were abundant at all scales. Tidally-driven porewater exchange within mangroves drove a progressive increase of sulfur cycle taxonomic groups and their functional genes both temporally (tidal cycles) and spatially (from mangrove porewater to continental shelf). Overall, we revealed a unified and consistent response of microbiomes at different spatial and temporal scales to tidally-driven mangrove porewater exchange.

摘要

在大潮期的生态系统中,红树林是全球碳封存的热点地区,但微生物驱动的生物地球化学循环仍知之甚少。在这里,我们研究了沿海水域红树林微生物群落组成的驱动因素。观测是在世界上最大的红树林系统之一的亚马逊地区进行的,该地区有效地将有机碳埋藏在土壤中,并通过向海洋输出溶解碳来进行封存。潜在的向毗邻海洋区域的输出量为每秒 57 至 380 公斤的溶解和颗粒有机碳(每天最多 3.3 万吨 C)。大潮期调节了微生物群落及其代谢过程,例如,缺氧光合作用、硫和氮循环。呼吸作用、硫代谢和溶解有机碳(DOC)水平与功能群和微生物细胞计数有关。总微生物计数减少,蓝藻计数在大潮期达到峰值。驱动碳、氮、硫和甲烷循环的微生物群落在所有空间尺度上都是一致的。参与硫循环的分类群(Allochromatium、Desulfovibrio 和 Thibacillus)在红树林中丰度很高,且在所有尺度上都存在。红树林内的潮汐驱动的孔隙水交换在时间(潮汐周期)和空间(从红树林孔隙水到大陆架)上驱动了硫循环分类群及其功能基因的逐渐增加。总的来说,我们揭示了微生物组在不同时空尺度上对潮汐驱动的红树林孔隙水交换的统一和一致的响应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验